IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp537-545.html
   My bibliography  Save this article

Interfacial properties of high-order aggregation of organic dyes: A combination of static and dynamic properties

Author

Listed:
  • Wen, Yaping
  • Zhang, Weiyi
  • Zhu, Xinrui
  • Zhang, Jinglai
  • Wang, Li

Abstract

Aggregation is inevitable for the organic dyes, and it is difficult to evaluate its effects due to its complexity. Herein, we combine first principles and molecular dynamics (MD) simulations to explore the influence of aggregation on the optical and electronic properties for THI-BTZ-2T-C. If only the static properties are considered, the configuration of dye is not varied greatly when the adsorbed dyes are increased from monomer to hexamer. However, the absorption spectrum varies regularly with the increased aggregation order. In addition, the contribution of different orbitals of various atoms to density of states (DOS) gradually increases with the aggregation order increasing. When dynamics simulation is performed, the torsion between different components of dye is enlarged. Meanwhile, the perpendicular model is altered during the dynamics simulations, the dye would like to bend towards the TiO2 surface. Moreover, the electronic coupling is greatly improved during the molecular dynamics simulations especially for the H-aggregation. The dye aggregation mainly affects the electrons injection process resulting in the reduction of the photoelectric conversion efficiency for dye sensitized solar cells (DSSCs). Reduction of perfect face to face stacking would be an efficient pathway to weaken the aggregation.

Suggested Citation

  • Wen, Yaping & Zhang, Weiyi & Zhu, Xinrui & Zhang, Jinglai & Wang, Li, 2018. "Interfacial properties of high-order aggregation of organic dyes: A combination of static and dynamic properties," Energy, Elsevier, vol. 158(C), pages 537-545.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:537-545
    DOI: 10.1016/j.energy.2018.06.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421831123X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Jiawei & Sumathy, K. & Qiao, Qiquan & Zhou, Zhengping, 2017. "Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 234-246.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peharz, Gerhard & Ulm, Andreas, 2018. "Quantifying the influence of colors on the performance of c-Si photovoltaic devices," Renewable Energy, Elsevier, vol. 129(PA), pages 299-308.
    2. Ding, Haoran & Xu, Mengyu & Zhang, Shicong & Yu, Fengtao & Kong, Kangyi & Shen, Zhongjin & Hua, Jianli, 2020. "Organic blue-colored D-A-π-A dye-sensitized TiO2 for efficient and stable photocatalytic hydrogen evolution under visible/near-infrared-light irradiation," Renewable Energy, Elsevier, vol. 155(C), pages 1051-1059.
    3. Minseon Kong & Da Hyeon Oh & Baekseo Choi & Yoon Soo Han, 2022. "Photovoltaic Performance of Dye-Sensitized Solar Cells with a Solid-State Redox Mediator Based on an Ionic Liquid and Hole-Transporting Triphenylamine Compound," Energies, MDPI, vol. 15(8), pages 1-13, April.
    4. Fabian Schoden & Marius Dotter & Dörthe Knefelkamp & Tomasz Blachowicz & Eva Schwenzfeier Hellkamp, 2021. "Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cells," Energies, MDPI, vol. 14(13), pages 1-12, June.
    5. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.
    6. Wali, Qamar & Elumalai, Naveen Kumar & Iqbal, Yaseen & Uddin, Ashraf & Jose, Rajan, 2018. "Tandem perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 89-110.
    7. Alessandro Cannavale & Francesco Martellotta & Francesco Fiorito & Ubaldo Ayr, 2020. "The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices," Energies, MDPI, vol. 13(8), pages 1-24, April.
    8. Siva Sankar Nemala & Sujitha Ravulapalli & Sudhanshu Mallick & Parag Bhargava & Sivasambu Bohm & Mayank Bhushan & Anukul K. Thakur & Debananda Mohapatra, 2020. "Conventional or Microwave Sintering: A Comprehensive Investigation to Achieve Efficient Clean Energy Harvesting," Energies, MDPI, vol. 13(23), pages 1-13, November.
    9. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Husain, Alaa A.F. & Hasan, Wan Zuha W. & Shafie, Suhaidi & Hamidon, Mohd N. & Pandey, Shyam Sudhir, 2018. "A review of transparent solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 779-791.
    12. Dimitris A. Chalkias & Christos Charalampopoulos & Stefania Aivali & Aikaterini K. Andreopoulou & Aggeliki Karavioti & Elias Stathatos, 2021. "A Di-Carbazole-Based Dye as a Potential Sensitizer for Greenhouse-Integrated Dye-Sensitized Solar Cells," Energies, MDPI, vol. 14(4), pages 1-15, February.
    13. Patil, Supriya A. & Hussain, Sajjad & Shrestha, Nabeen K. & Mengal, Naveed & Jalalah, Mohammed & Jung, Jongwan & Park, Jea-Gun & Choi, Hyosung & Kim, Hak-Sung & Noh, Yong-Young, 2020. "Facile synthesis of cobalt–nickel sulfide thin film as a promising counter electrode for triiodide reduction in dye-sensitized solar cells," Energy, Elsevier, vol. 202(C).
    14. Sanaz Mohammadpourasl & Fabrizia Fabrizi de Biani & Carmen Coppola & Maria Laura Parisi & Lorenzo Zani & Alessio Dessì & Massimo Calamante & Gianna Reginato & Riccardo Basosi & Adalgisa Sinicropi, 2020. "Ground-State Redox Potentials Calculations of D-π-A and D-A-π-A Organic Dyes for DSSC and Visible-Light-Driven Hydrogen Production," Energies, MDPI, vol. 13(8), pages 1-10, April.
    15. Vicente-Gomila, J.M. & Artacho-Ramírez, M.A. & Ting, Ma & Porter, A.L., 2021. "Combining tech mining and semantic TRIZ for technology assessment: Dye-sensitized solar cell as a case," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    16. Miguel A. Taco-Ugsha & Cristian P. Santacruz & Patricio J. Espinoza-Montero, 2020. "Natural Dyes from Mortiño ( Vaccinium floribundum ) as Sensitizers in Solar Cells," Energies, MDPI, vol. 13(4), pages 1-11, February.
    17. Huang, Yuewu & Chen, Xingguo & Chen, Zhuo, 2023. "Performance evaluation of a solar hybrid system integrating a two-stage annular thermoelectric generator," Renewable Energy, Elsevier, vol. 215(C).
    18. Yujing Guo & Chao Pei & Rene M. Koenigs, 2022. "A combined experimental and theoretical study on the reactivity of nitrenes and nitrene radical anions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Gracia-Amillo, Ana M. & Bardizza, Giorgio & Salis, Elena & Huld, Thomas & Dunlop, Ewan D., 2018. "Energy-based metric for analysis of organic PV devices in comparison with conventional industrial technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 76-89.
    20. Shubbak, Mahmood H., 2019. "Advances in solar photovoltaics: Technology review and patent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:537-545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.