IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v68y2017ip1p234-246.html
   My bibliography  Save this article

Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends

Author

Listed:
  • Gong, Jiawei
  • Sumathy, K.
  • Qiao, Qiquan
  • Zhou, Zhengping

Abstract

Dye-sensitized solar cell (DSSC) offers an efficient and easily implemented technology for future energy supply. Compared to conventional silicon solar cells, it provides comparable power conversion efficiency (PCE) at low material and manufacturing costs. DSSC materials such as titanium oxide (TiO2) are inexpensive, abundant and innocuous to the environment. Since DSSC materials are less prone to contamination and processable at ambient temperature, a roll-to-roll process could be utilized to print DSSCs on the mass production line. DSSCs perform better under lower light intensities, which makes them an excellent choice for indoor applications. Due to the advancement of molecular engineering, colored and transparent thin films have been introduced to enhance the aesthetic values. Up to now, such benefits have attracted considerable research interests and commercialization effort. Here, this review examines advanced techniques and research trends of this promising technology from the perspective of device modeling, state-of-art techniques, and novel device structures.

Suggested Citation

  • Gong, Jiawei & Sumathy, K. & Qiao, Qiquan & Zhou, Zhengping, 2017. "Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 234-246.
  • Handle: RePEc:eee:rensus:v:68:y:2017:i:p1:p:234-246
    DOI: 10.1016/j.rser.2016.09.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116305883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.09.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    2. Parisi, Maria Laura & Maranghi, Simone & Basosi, Riccardo, 2014. "The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 124-138.
    3. Shalini, S. & Balasundara prabhu, R. & Prasanna, S. & Mallick, Tapas K. & Senthilarasu, S., 2015. "Review on natural dye sensitized solar cells: Operation, materials and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1306-1325.
    4. Greijer, Helena & Karlson, Lennart & Lindquist, Sten-Eric & Anders Hagfeldt,, 2001. "Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system," Renewable Energy, Elsevier, vol. 23(1), pages 27-39.
    5. Mahalingam, S. & Abdullah, H., 2016. "Electron transport study of indium oxide as photoanode in DSSCs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 245-255.
    6. Sugathan, Vipinraj & John, Elsa & Sudhakar, K., 2015. "Recent improvements in dye sensitized solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 54-64.
    7. Guai, Guan Hong & Song, Qun Liang & Lu, Zhi Song & Ng, Chee Mang & Li, Chang Ming, 2013. "Tailor and functionalize TiO2 compact layer by acid treatment for high performance dye-sensitized solar cell and its enhancement mechanism," Renewable Energy, Elsevier, vol. 51(C), pages 29-35.
    8. Gong, Jiawei & Liang, Jing & Sumathy, K., 2012. "Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5848-5860.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    2. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Richhariya, Geetam & Kumar, Anil & Tekasakul, Perapong & Gupta, Bhupendra, 2017. "Natural dyes for dye sensitized solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 705-718.
    4. Arkan, Foroogh & Izadyar, Mohammad, 2018. "Recent theoretical progress in the organic/metal-organic sensitizers as the free dyes, dye/TiO2 and dye/electrolyte systems; Structural modifications and solvent effects on their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 609-655.
    5. Bandara, T.M.W.J. & DeSilva, L. Ajith & Ratnasekera, J.L. & Hettiarachchi, K.H. & Wijerathna, A.P. & Thakurdesai, Madhavi & Preston, Joshua & Albinsson, I. & Mellander, B.-E., 2019. "High efficiency dye-sensitized solar cell based on a novel gel polymer electrolyte containing RbI and tetrahexylammonium iodide (Hex4NI) salts and multi-layered photoelectrodes of TiO2 nanoparticles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 282-290.
    6. Wali, Qamar & Elumalai, Naveen Kumar & Iqbal, Yaseen & Uddin, Ashraf & Jose, Rajan, 2018. "Tandem perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 89-110.
    7. Ummartyotin, S. & Bunnak, N. & Manuspiya, H., 2016. "A comprehensive review on modified clay based composite for energy based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 466-472.
    8. Hosseinnezhad, Mozhgan & Gharanjig, Kamaladin & Moradian, Siamak & Saeb, Mohammad Reza, 2017. "In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration?," Energy, Elsevier, vol. 134(C), pages 864-870.
    9. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Husain, Alaa A.F. & Hasan, Wan Zuha W. & Shafie, Suhaidi & Hamidon, Mohd N. & Pandey, Shyam Sudhir, 2018. "A review of transparent solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 779-791.
    11. Shahzad, Nadia & Lutfullah, & Perveen, Tahira & Pugliese, Diego & Haq, Sirajul & Fatima, Nusrat & Salman, Syed Muhammad & Tagliaferro, Alberto & Shahzad, Muhammad Imran, 2022. "Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Fabian Schoden & Joscha Detzmeier & Anna Katharina Schnatmann & Tomasz Blachowicz & Eva Schwenzfeier-Hellkamp, 2022. "Investigating the Remanufacturing Potential of Dye-Sensitized Solar Cells," Sustainability, MDPI, vol. 14(9), pages 1-14, May.
    13. Parisi, Maria Laura & Maranghi, Simone & Basosi, Riccardo, 2014. "The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 124-138.
    14. Kumara, N.T.R.N. & Lim, Andery & Lim, Chee Ming & Petra, Mohamad Iskandar & Ekanayake, Piyasiri, 2017. "Recent progress and utilization of natural pigments in dye sensitized solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 301-317.
    15. Mozaffari, Samaneh & Nateghi, Mohammad Reza & Zarandi, Mahmood Borhani, 2017. "An overview of the Challenges in the commercialization of dye sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 675-686.
    16. Parisi, M.L. & Maranghi, S. & Vesce, L. & Sinicropi, A. & Di Carlo, A. & Basosi, R., 2020. "Prospective life cycle assessment of third-generation photovoltaics at the pre-industrial scale: A long-term scenario approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    17. Khan, M.Z.H. & Al-Mamun, M.R. & Halder, P.K. & Aziz, M.A., 2017. "Performance improvement of modified dye-sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 602-617.
    18. Rani, Mamta & Tripathi, S.K., 2016. "Electron transfer properties of organic dye sensitized ZnO and ZnO/TiO2 photoanode for dye sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 97-107.
    19. Maddah, Hisham A. & Berry, Vikas & Behura, Sanjay K., 2020. "Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:68:y:2017:i:p1:p:234-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.