IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v212y2025ics1364032125000541.html
   My bibliography  Save this article

Recent advances in halide perovskite supercapacitors for enhanced performance and stability

Author

Listed:
  • Popoola, Idris K.
  • Qahtan, Talal F.

Abstract

This review paper offers an in-depth exploration of the latest advancements in employing halide perovskites as materials for energy storage in supercapacitors. The paper covers a range of topics, including the techniques used for synthesizing these materials, the resulting electrode structures, and the influence of temperature on their properties. Additionally, it delves into the selection of electrolytes for constructing halide perovskite supercapacitors. The electrochemical performance of these supercapacitors is thoroughly assessed through cyclic voltammetry, galvanostatic charge-discharge testing, and electrochemical impedance spectroscopy. Furthermore, the study examines the long-term stability of these devices after multiple charge and discharge cycles. Lastly, the review outlines potential avenues for future research in the exciting field of halide perovskite supercapacitors. In summary, this review provides a comprehensive synthesis of recent developments in the utilization of halide perovskites as active electrode materials in supercapacitors and identifies promising directions for future research.

Suggested Citation

  • Popoola, Idris K. & Qahtan, Talal F., 2025. "Recent advances in halide perovskite supercapacitors for enhanced performance and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125000541
    DOI: 10.1016/j.rser.2025.115381
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125000541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hyo-Young Kim & Jeeyoung Shin & Il-Chan Jang & Young-Wan Ju, 2019. "Hydrothermal Synthesis of Three-Dimensional Perovskite NiMnO 3 Oxide and Application in Supercapacitor Electrode," Energies, MDPI, vol. 13(1), pages 1-11, December.
    2. Ye Sol Lim & Hyun-Ah Jung & Haejin Hwang, 2018. "Fabrication of PEO-PMMA-LiClO 4 -Based Solid Polymer Electrolytes Containing Silica Aerogel Particles for All-Solid-State Lithium Batteries," Energies, MDPI, vol. 11(10), pages 1-10, September.
    3. Popoola, Idris K. & Gondal, Mohammed A. & Qahtan, Talal F., 2018. "Recent progress in flexible perovskite solar cells: Materials, mechanical tolerance and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3127-3151.
    4. Gong, Jiawei & Liang, Jing & Sumathy, K., 2012. "Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5848-5860.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bandara, T.M.W.J. & DeSilva, L. Ajith & Ratnasekera, J.L. & Hettiarachchi, K.H. & Wijerathna, A.P. & Thakurdesai, Madhavi & Preston, Joshua & Albinsson, I. & Mellander, B.-E., 2019. "High efficiency dye-sensitized solar cell based on a novel gel polymer electrolyte containing RbI and tetrahexylammonium iodide (Hex4NI) salts and multi-layered photoelectrodes of TiO2 nanoparticles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 282-290.
    2. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    3. Zhao, Xuebing & Liu, Wei & Deng, Yulin & Zhu, J.Y., 2017. "Low-temperature microbial and direct conversion of lignocellulosic biomass to electricity: Advances and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 268-282.
    4. Fabian Schoden & Marius Dotter & Dörthe Knefelkamp & Tomasz Blachowicz & Eva Schwenzfeier Hellkamp, 2021. "Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cells," Energies, MDPI, vol. 14(13), pages 1-12, June.
    5. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2016. "A pilot facility for analysis and simulation of smart microgrids feeding smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1247-1255.
    6. Wali, Qamar & Elumalai, Naveen Kumar & Iqbal, Yaseen & Uddin, Ashraf & Jose, Rajan, 2018. "Tandem perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 89-110.
    7. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    8. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Husain, Alaa A.F. & Hasan, Wan Zuha W. & Shafie, Suhaidi & Hamidon, Mohd N. & Pandey, Shyam Sudhir, 2018. "A review of transparent solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 779-791.
    11. Demirhan, Yasemin & Koseoglu, Hasan & Turkoglu, Fulya & Uyanik, Zemzem & Ozdemir, Mehtap & Aygun, Gulnur & Ozyuzer, Lutfi, 2020. "The controllable deposition of large area roll-to-roll sputtered ito thin films for photovoltaic applications," Renewable Energy, Elsevier, vol. 146(C), pages 1549-1559.
    12. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    13. Li, Bowei & Jayawardena, K.D. G. Imalka & Zhang, Jing & Bandara, Rajapakshe Mudiyanselage Indrachapa & Liu, Xueping & Bi, Jingxin & Silva, Shashini M. & Liu, Dongtao & Underwood, Cameron C.L. & Xiang,, 2024. "Stability of formamidinium tin triiodide-based inverted perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Vicente-Gomila, J.M. & Artacho-Ramírez, M.A. & Ting, Ma & Porter, A.L., 2021. "Combining tech mining and semantic TRIZ for technology assessment: Dye-sensitized solar cell as a case," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    15. Jafarzadeh, Mohammad & Sipaut, Coswald Stephen & Dayou, Jedol & Mansa, Rachel Fran, 2016. "Recent progresses in solar cells: Insight into hollow micro/nano–structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 543-568.
    16. Sharma, Sunita & Bulkesh Siwach, & Ghoshal, S.K. & Mohan, Devendra, 2017. "Dye sensitized solar cells: From genesis to recent drifts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 529-537.
    17. Shalini, S. & Balasundara prabhu, R. & Prasanna, S. & Mallick, Tapas K. & Senthilarasu, S., 2015. "Review on natural dye sensitized solar cells: Operation, materials and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1306-1325.
    18. P. K. Olulope* & A. O. Adeleye & A. B. Amomoh, 2018. "Design and Simulation of Dye Sensitized Solar Cell as a Cost-Effective Alternative to Silicon Solar Panel," Scientific Review, Academic Research Publishing Group, vol. 4(5), pages 44-52, 05-2018.
    19. Shahzad, Nadia & Lutfullah, & Perveen, Tahira & Pugliese, Diego & Haq, Sirajul & Fatima, Nusrat & Salman, Syed Muhammad & Tagliaferro, Alberto & Shahzad, Muhammad Imran, 2022. "Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Fabian Schoden & Joscha Detzmeier & Anna Katharina Schnatmann & Tomasz Blachowicz & Eva Schwenzfeier-Hellkamp, 2022. "Investigating the Remanufacturing Potential of Dye-Sensitized Solar Cells," Sustainability, MDPI, vol. 14(9), pages 1-14, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125000541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.