IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v142y2018icp702-715.html
   My bibliography  Save this article

An assessment of CO2 emissions avoided by energy-efficiency programs: A general methodology and a case study in Brazil

Author

Listed:
  • Vieira, Nathália Duarte Braz
  • Nogueira, Luiz Augusto Horta
  • Haddad, Jamil

Abstract

Energy efficiency has been proposed as one of the most effective instruments for mitigating greenhouse gas emissions. However, the methodologies to estimate the impact of energy savings on these emissions are generally aggregated and simplified. This study presents an approach for evaluating the emissions avoided by energy-efficiency programs; decomposing the energy savings in the national electrical system load curve and correlating it with the emission factor observed in different periods of this curve. This methodology was applied to the three main programs that promote the rational use of electricity in Brazil: National Electric Energy Conservation Program (PROCEL), Energy Efficiency Law and Energy Efficiency Program (PEE) coordinated by National Agency of Electric Energy (ANEEL). A specific mitigation effect ranging from 0,329 to 0,332 tCO2avoided/MWhsaved is found, which is above the value currently assumed in governmental estimates. The basis for this difference is the fact that energy saved occurs mainly in uses such as lighting, which happen at the load curve peak (or near it) when the thermal power plants are dispatched. The proposed methodology presents more consistent results than those obtained by conventional approaches, endorsing the energy-efficiency role as an instrument for climate change mitigation.

Suggested Citation

  • Vieira, Nathália Duarte Braz & Nogueira, Luiz Augusto Horta & Haddad, Jamil, 2018. "An assessment of CO2 emissions avoided by energy-efficiency programs: A general methodology and a case study in Brazil," Energy, Elsevier, vol. 142(C), pages 702-715.
  • Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:702-715
    DOI: 10.1016/j.energy.2017.10.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217317772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghisi, Enedir & Gosch, Samuel & Lamberts, Roberto, 2007. "Electricity end-uses in the residential sector of Brazil," Energy Policy, Elsevier, vol. 35(8), pages 4107-4120, August.
    2. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    3. Naspolini, Helena F. & Rüther, Ricardo, 2012. "Assessing the technical and economic viability of low-cost domestic solar hot water systems (DSHWS) in low-income residential dwellings in Brazil," Renewable Energy, Elsevier, vol. 48(C), pages 92-99.
    4. Emilio L�bre La Rovere & Branca Bastos Americano, 2002. "Domestic actions contributing to the mitigation of GHG emissions from power generation in Brazil," Climate Policy, Taylor & Francis Journals, vol. 2(2-3), pages 247-254, September.
    5. -, 2016. "Monitoring energy efficiency in Latin America," Documentos de Proyectos 40809, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    6. Wachsmann, Ulrike & Wood, Richard & Lenzen, Manfred & Schaeffer, Roberto, 2009. "Structural decomposition of energy use in Brazil from 1970 to 1996," Applied Energy, Elsevier, vol. 86(4), pages 578-587, April.
    7. Calili, Rodrigo F. & Souza, Reinaldo C. & Galli, Alain & Armstrong, Margaret & Marcato, André Luis M., 2014. "Estimating the cost savings and avoided CO2 emissions in Brazil by implementing energy efficient policies," Energy Policy, Elsevier, vol. 67(C), pages 4-15.
    8. Martins, F.R. & Abreu, S.L. & Pereira, E.B., 2012. "Scenarios for solar thermal energy applications in Brazil," Energy Policy, Elsevier, vol. 48(C), pages 640-649.
    9. Rodrigo F. Calili & Reinaldo C. Souza & Alain Galli & Margaret Armstrong & André Luis M. Marcato, 2014. "Estimating the cost savings and avoided CO2 emissions in Brazil by implementing energy efficient policies," Post-Print hal-01110915, HAL.
    10. Achão, Carla & Schaeffer, Roberto, 2009. "Decomposition analysis of the variations in residential electricity consumption in Brazil for the 1980-2007 period: Measuring the activity, intensity and structure effects," Energy Policy, Elsevier, vol. 37(12), pages 5208-5220, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Shufen & Huang, Chenchen, 2021. "Energy structure evaluation and optimization in BRICS: A dynamic analysis based on a slack based measurement DEA with undesirable outputs," Energy, Elsevier, vol. 216(C).
    2. Wang, Feng & Sun, Xiaoyu & Reiner, David M. & Wu, Min, 2020. "Changing trends of the elasticity of China's carbon emission intensity to industry structure and energy efficiency," Energy Economics, Elsevier, vol. 86(C).
    3. Safarzadeh, Soroush & Rasti-Barzoki, Morteza, 2019. "A game theoretic approach for pricing policies in a duopolistic supply chain considering energy productivity, industrial rebound effect, and government policies," Energy, Elsevier, vol. 167(C), pages 92-105.
    4. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    5. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza & Piran, Md Jalil, 2020. "A game theoretic approach for the duopoly pricing of energy-efficient appliances regarding innovation protection and social welfare," Energy, Elsevier, vol. 200(C).
    6. Li, Guo & Zakari, Abdulrasheed & Tawiah, Vincent, 2020. "Energy resource melioration and CO2 emissions in China and Nigeria: Efficiency and trade perspectives," Resources Policy, Elsevier, vol. 68(C).
    7. Mahapatra, Bamadev & Irfan, Mohd, 2021. "Asymmetric impacts of energy efficiency on carbon emissions: A comparative analysis between developed and developing economies," Energy, Elsevier, vol. 227(C).
    8. Hafiz Wasim Akram & Samreen Akhtar & Alam Ahmad & Imran Anwar & Mohammad Ali Bait Ali Sulaiman, 2023. "Developing a Conceptual Framework Model for Effective Perishable Food Cold-Supply-Chain Management Based on Structured Literature Review," Sustainability, MDPI, vol. 15(6), pages 1-28, March.
    9. Zeeshan Khan & Ramez Abubakr Badeeb & Taimoor Hassan & Changyong Zhang & Khalid Eltayeb Elfaki, 2023. "Emissions‐Adjusted International Trade for Sustainable Development in China: Evidence from dynamic autoregressive distributed lags model and kernel based regression," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 379-392, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira Uhr, Daniel de Abreu & Squarize Chagas, André Luis & Ziero Uhr, Júlia Gallego, 2019. "Estimation of elasticities for electricity demand in Brazilian households and policy implications," Energy Policy, Elsevier, vol. 129(C), pages 69-79.
    2. Daniel de Abreu Pereira Uhr & Júlia Gallego Ziero Uhr, André Luis Squarize Chagas, 2017. "Estimation of price and income elasticities for the Brazilian household electricity demand," Working Papers, Department of Economics 2017_12, University of São Paulo (FEA-USP).
    3. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    4. João Tovar Jalles, 2019. "Polluting Emissions and GDP: Decoupling Evidence from Brazilian States," Working Papers REM 2019/0104, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    5. Cruz, Talita & Schaeffer, Roberto & Lucena, André F.P. & Melo, Sérgio & Dutra, Ricardo, 2020. "Solar water heating technical-economic potential in the household sector in Brazil," Renewable Energy, Elsevier, vol. 146(C), pages 1618-1639.
    6. Jorge Cunha & Manuel Lopes Nunes & Fátima Lima, 2018. "Discerning the factors explaining the change in energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 163-179, December.
    7. Guokui Wang & Xingpeng Chen & Zilong Zhang & Chaolan Niu, 2015. "Influencing Factors of Energy-Related CO 2 Emissions in China: A Decomposition Analysis," Sustainability, MDPI, vol. 7(10), pages 1-19, October.
    8. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
    9. Agatha Oliveira & Rodrigo Calili & Maria Fatima Almeida & Manuel Sousa, 2019. "A Systemic and Contextual Framework to Define a Country’s 2030 Agenda from a Foresight Perspective," Sustainability, MDPI, vol. 11(22), pages 1-28, November.
    10. Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
    11. Rogan, Fionn & Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Decomposition analysis of gas consumption in the residential sector in Ireland," Energy Policy, Elsevier, vol. 42(C), pages 19-36.
    12. Wang, Yanqiu & Zhu, Zhiwei & Zhu, Zhaoge & Liu, Zhenbin, 2019. "Analysis of China's energy consumption changing using the Mean Rate of Change Index and the logarithmic mean divisia index," Energy, Elsevier, vol. 167(C), pages 275-282.
    13. Villareal, Maria José Charfuelan & Moreira, João Manoel Losada, 2016. "Household consumption of electricity in Brazil between 1985 and 2013," Energy Policy, Elsevier, vol. 96(C), pages 251-259.
    14. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    15. Giglio, T. & Santos, V. & Lamberts, R., 2019. "Analyzing the impact of small solar water heating systems on peak demand and on emissions in the Brazilian context," Renewable Energy, Elsevier, vol. 133(C), pages 1404-1413.
    16. Baldini, Mattia & Klinge Jacobsen, Henrik, 2016. "Optimal trade-offs between energy efficiency improvements and additional renewable energy supply: A review of international experiences," MPRA Paper 102031, University Library of Munich, Germany.
    17. Javier Linkolk López-Gonzales & Reinaldo Castro Souza & Felipe Leite Coelho da Silva & Natalí Carbo-Bustinza & Germán Ibacache-Pulgar & Rodrigo Flora Calili, 2020. "Simulation of the Energy Efficiency Auction Prices via the Markov Chain Monte Carlo Method," Energies, MDPI, vol. 13(17), pages 1-19, September.
    18. Rogério Diogne de Souza e Silva & Rosana Cavalcante de Oliveira & Maria Emília de Lima Tostes, 2017. "Analysis of the Brazilian Energy Efficiency Program for Electricity Distribution Systems," Energies, MDPI, vol. 10(9), pages 1-19, September.
    19. Camargo Nogueira, Carlos Eduardo & Vidotto, Magno Luiz & Toniazzo, Fernando & Debastiani, Gilson, 2016. "Software for designing solar water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 361-375.
    20. da Silva, Felipe L.C. & Cyrino Oliveira, Fernando L. & Souza, Reinaldo C., 2019. "A bottom-up bayesian extension for long term electricity consumption forecasting," Energy, Elsevier, vol. 167(C), pages 198-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:142:y:2018:i:c:p:702-715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.