IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp2164-2176.html
   My bibliography  Save this article

Techno-economic optimization of ethanol synthesis from rice-straw supply chains

Author

Listed:
  • Kristianto, Yohanes
  • Zhu, Liandong

Abstract

The objective of this article is to design and plan sustainable bio-ethanol supply chain. Modeling supply chains that achieve economic, social and environmental feasibility through production, process and energy efficiency is a challenge. Life cycle assessment that is coupled with techno-economic optimization of bio-ethanol supply chain is an alternative solution to achieve sustainability. A simulation of the biomass conversion is used to find process parameters of the conversion technology. The results show that the unified model is capable of minimizing both CO2 emissions and energy and utility consumptions. In addition, the supply chain is capable of contributing to local economy through jobs creation. While the model is quite comprehensive, the future research recommendation on energy integration and global sustainability is proposed.

Suggested Citation

  • Kristianto, Yohanes & Zhu, Liandong, 2017. "Techno-economic optimization of ethanol synthesis from rice-straw supply chains," Energy, Elsevier, vol. 141(C), pages 2164-2176.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2164-2176
    DOI: 10.1016/j.energy.2017.09.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217315980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Heijden, Harro & Ptasinski, Krzysztof J., 2012. "Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis," Energy, Elsevier, vol. 46(1), pages 200-210.
    2. Villanueva Perales, A.L. & Reyes Valle, C. & Ollero, P. & Gómez-Barea, A., 2011. "Technoeconomic assessment of ethanol production via thermochemical conversion of biomass by entrained flow gasification," Energy, Elsevier, vol. 36(7), pages 4097-4108.
    3. Saga, Kiyotaka & Imou, Kenji & Yokoyama, Shinya & Minowa, Tomoaki, 2010. "Net energy analysis of bioethanol production system from high-yield rice plant in Japan," Applied Energy, Elsevier, vol. 87(7), pages 2164-2168, July.
    4. Seabra, Joaquim E.A. & Macedo, Isaias C., 2011. "Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil," Energy Policy, Elsevier, vol. 39(1), pages 421-428, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lo, Shirleen Lee Yuen & How, Bing Shen & Teng, Sin Yong & Lam, Hon Loong & Lim, Chun Hsion & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Stochastic techno-economic evaluation model for biomass supply chain: A biomass gasification case study with supply chain uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Eddouibi, Jaouad & Abderafi, Souad & Vaudreuil, Sébastien & Bounahmidi, Tijani, 2022. "Dynamic simulation of solar-powered ORC using open-source tools: A case study combining SAM and coolprop via Python," Energy, Elsevier, vol. 239(PA).
    3. Tamás Mizik, 2021. "Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review," Energies, MDPI, vol. 14(19), pages 1-25, September.
    4. Botshekan, Maryam & Moheb, Ahmad & Vatankhah, Fatemeh & Karimi, Keikhosro & Shafiei, Marzieh, 2022. "Energy saving alternatives for renewable ethanol production with the focus on separation/purification units: A techno-economic analysis," Energy, Elsevier, vol. 239(PE).
    5. Mizik, Tamás, 2022. "A bioetanol-termelés gazdasági és fenntarthatósági vetületei [Economic and sustainability aspects of bioethanol production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1213-1241.
    6. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Nugroho, Yohanes Kristianto & Zhu, Liandong, 2019. "Platforms planning and process optimization for biofuels supply chain," Renewable Energy, Elsevier, vol. 140(C), pages 563-579.
    8. Brinkman, Marnix L.J. & Wicke, Birka & Faaij, André P.C. & van der Hilst, Floor, 2019. "Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Nugroho, Yohanes Kristianto & Zhu, Liandong & Heavey, Cathal, 2022. "Building an agent-based techno-economic assessment coupled with life cycle assessment of biomass to methanol supply chains," Applied Energy, Elsevier, vol. 309(C).
    10. Junnian Song & Yang Pu & Wei Yang & Jingzheng Ren, 2019. "Highlighting Regional Energy-Economic-Environmental Benefits of Agricultural Bioresources Utilization: An Integrated Model from Life Cycle Perspective," Sustainability, MDPI, vol. 11(13), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nugroho, Yohanes Kristianto & Zhu, Liandong, 2019. "Platforms planning and process optimization for biofuels supply chain," Renewable Energy, Elsevier, vol. 140(C), pages 563-579.
    2. Jana, Kuntal & De, Sudipta, 2015. "Polygeneration using agricultural waste: Thermodynamic and economic feasibility study," Renewable Energy, Elsevier, vol. 74(C), pages 648-660.
    3. Taylor-de-Lima, Reynaldo L.N. & Gerbasi da Silva, Arthur José & Legey, Luiz F.L. & Szklo, Alexandre, 2018. "Evaluation of economic feasibility under uncertainty of a thermochemical route for ethanol production in Brazil," Energy, Elsevier, vol. 150(C), pages 363-376.
    4. Dias, Marina O.S. & Junqueira, Tassia L. & Cavalett, Otávio & Pavanello, Lucas G. & Cunha, Marcelo P. & Jesus, Charles D.F. & Maciel Filho, Rubens & Bonomi, Antonio, 2013. "Biorefineries for the production of first and second generation ethanol and electricity from sugarcane," Applied Energy, Elsevier, vol. 109(C), pages 72-78.
    5. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    6. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    7. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    8. Soam, Shveta & Kapoor, Manali & Kumar, Ravindra & Borjesson, Pal & Gupta, Ravi P. & Tuli, Deepak K., 2016. "Global warming potential and energy analysis of second generation ethanol production from rice straw in India," Applied Energy, Elsevier, vol. 184(C), pages 353-364.
    9. Cervi, Walter Rossi & Lamparelli, Rubens Augusto Camargo & Seabra, Joaquim Eugênio Abel & Junginger, Martin & van der Hilst, Floor, 2020. "Spatial assessment of the techno-economic potential of bioelectricity production from sugarcane straw," Renewable Energy, Elsevier, vol. 156(C), pages 1313-1324.
    10. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    11. Parvez, A.M. & Mujtaba, I.M. & Wu, T., 2016. "Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification," Energy, Elsevier, vol. 94(C), pages 579-588.
    12. Wiraditma Prananta & Ida Kubiszewski, 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)," Energies, MDPI, vol. 14(10), pages 1-15, May.
    13. Rohowsky, Bernd & Häßler, Thomas & Gladis, Arne & Remmele, Edgar & Schieder, Doris & Faulstich, Martin, 2013. "Feasibility of simultaneous saccharification and juice co-fermentation on hydrothermal pretreated sweet sorghum bagasse for ethanol production," Applied Energy, Elsevier, vol. 102(C), pages 211-219.
    14. Haro, Pedro & Trippe, Frederik & Stahl, Ralph & Henrich, Edmund, 2013. "Bio-syngas to gasoline and olefins via DME – A comprehensive techno-economic assessment," Applied Energy, Elsevier, vol. 108(C), pages 54-65.
    15. Reyes Valle, C. & Villanueva Perales, A.L. & Vidal-Barrero, F. & Ollero, P., 2015. "Integrated economic and life cycle assessment of thermochemical production of bioethanol to reduce production cost by exploiting excess of greenhouse gas savings," Applied Energy, Elsevier, vol. 148(C), pages 466-475.
    16. Mendiburu, Andrés Z. & Carvalho, João A. & Coronado, Christian J.R., 2014. "Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models," Energy, Elsevier, vol. 66(C), pages 189-201.
    17. Padi, Richard Kingsley & Chimphango, Annie, 2021. "Assessing the potential of integrating cassava residues-based bioenergy into national energy mix using long-range Energy Alternatives Planning systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Wang, Lei & Quiceno, Raul & Price, Catherine & Malpas, Rick & Woods, Jeremy, 2014. "Economic and GHG emissions analyses for sugarcane ethanol in Brazil: Looking forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 571-582.
    19. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    20. Fallahi, Alireza & Farzad, Somayeh & Mohtasebi, Seyed Saeid & Mandegari, Mohsen & Görgens, Johann F. & Gupta, Vijai Kumar & Lam, Su Shiung & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2021. "Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and exergoeconomic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2164-2176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.