IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp980-990.html
   My bibliography  Save this article

Feasibility analysis of 100% tire pyrolysis oil in a common rail Diesel engine

Author

Listed:
  • Žvar Baškovič, Urban
  • Vihar, Rok
  • Seljak, Tine
  • Katrašnik, Tomaž

Abstract

Tire pyrolysis oil (TPO) represents a promising waste-derived fuel for Diesel engines with its main deficiency being lower cetane number compared to Diesel fuel. Until now, successful utilization of the TPO in Diesel engines was possible only by increasing its cetane number, increasing compression ratio of the engine or preheating intake air or operation. This study shows the foremost results of utilizing the pure TPO in a modern turbocharged and intercooled Diesel engine without any of the aforementioned aids, which significantly facilitates its use and boosts its conversion efficiency to mechanical work. This was achieved by the tailored injection strategy that includes pilot injection, which was previously not utilized in combination with the TPO. The study reveals that with additional tailoring of the pilot injection, further optimization of thermodynamic parameters can be achieved while operating the turbocharged and intercooled Diesel engine in a wide operating range under the use of pure TPO. Discovered phenomena are supported by interpretation of interactions between the injection parameters and combustion as well as emission formation phenomena of the pure TPO.

Suggested Citation

  • Žvar Baškovič, Urban & Vihar, Rok & Seljak, Tine & Katrašnik, Tomaž, 2017. "Feasibility analysis of 100% tire pyrolysis oil in a common rail Diesel engine," Energy, Elsevier, vol. 137(C), pages 980-990.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:980-990
    DOI: 10.1016/j.energy.2017.01.156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421730172X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chauhan, Bhupendra Singh & Kumar, Naveen & Cho, Haeng Muk, 2012. "A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends," Energy, Elsevier, vol. 37(1), pages 616-622.
    2. Bhaduri, S. & Contino, F. & Jeanmart, H. & Breuer, E., 2015. "The effects of biomass syngas composition, moisture, tar loading and operating conditions on the combustion of a tar-tolerant HCCI (Homogeneous Charge Compression Ignition) engine," Energy, Elsevier, vol. 87(C), pages 289-302.
    3. Van de Beld, Bert & Holle, Elmar & Florijn, Jan, 2013. "The use of pyrolysis oil and pyrolysis oil derived fuels in diesel engines for CHP applications," Applied Energy, Elsevier, vol. 102(C), pages 190-197.
    4. Przybyla, Grzegorz & Szlek, Andrzej & Haggith, Dale & Sobiesiak, Andrzej, 2016. "Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas," Energy, Elsevier, vol. 116(P3), pages 1464-1478.
    5. Zhu, Lei & Cheung, C.S. & Huang, Zhen, 2016. "Impact of chemical structure of individual fatty acid esters on combustion and emission characteristics of diesel engine," Energy, Elsevier, vol. 107(C), pages 305-320.
    6. Alptekin, Ertan, 2017. "Emission, injection and combustion characteristics of biodiesel and oxygenated fuel blends in a common rail diesel engine," Energy, Elsevier, vol. 119(C), pages 44-52.
    7. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
    8. Feng, Zehao & Zhan, Cheng & Tang, Chenglong & Yang, Ke & Huang, Zuohua, 2016. "Experimental investigation on spray and atomization characteristics of diesel/gasoline/ethanol blends in high pressure common rail injection system," Energy, Elsevier, vol. 112(C), pages 549-561.
    9. Martínez, Juan Daniel & Puy, Neus & Murillo, Ramón & García, Tomás & Navarro, María Victoria & Mastral, Ana Maria, 2013. "Waste tyre pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 179-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Máté Zöldy & István Péter Kondor, 2021. "Simulation and Injector Bench Test Validation of Different Nozzle Hole Effect on Pyrolysis Oil-Diesel Oil Mixtures," Energies, MDPI, vol. 14(9), pages 1-14, April.
    2. Gad, M.S. & Panchal, Hitesh & Ağbulut, Ümit, 2022. "Waste to Energy: An experimental comparison of burning the waste-derived bio-oils produced by transesterification and pyrolysis methods," Energy, Elsevier, vol. 242(C).
    3. Szwaja, Magdalena & Chwist, Mariusz & Szymanek, Arkadiusz & Szwaja, Stanisław, 2022. "Pyrolysis oil blended n-butanol as a fuel for power generation by an internal combustion engine," Energy, Elsevier, vol. 261(PB).
    4. K. M. Akkoli & N. R. Banapurmath & Suresh G & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Maughal Ahmed Ali Baig & M. A. Mujtaba & Nazia Hossain & Kiran Shahapurkar & Ashraf Elfasakhany & Mishal A, 2021. "Effect of Producer Gas from Redgram Stalk and Combustion Chamber Types on the Emission and Performance Characteristics of Diesel Engine," Energies, MDPI, vol. 14(18), pages 1-17, September.
    5. Martínez, Juan Daniel, 2021. "An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Carlo Caligiuri & Urban Žvar Baškovič & Massimiliano Renzi & Tine Seljak & Samuel Rodman Oprešnik & Marco Baratieri & Tomaž Katrašnik, 2021. "Complementing Syngas with Natural Gas in Spark Ignition Engines for Power Production: Effects on Emissions and Combustion," Energies, MDPI, vol. 14(12), pages 1-18, June.
    7. Gad, M.S. & Abu-Elyazeed, O.S. & Mohamed, M.A. & Hashim, A.M., 2021. "Effect of oil blends derived from catalytic pyrolysis of waste cooking oil on diesel engine performance, emissions and combustion characteristics," Energy, Elsevier, vol. 223(C).
    8. István Péter Kondor & Máté Zöldy & Dénes Mihály, 2021. "Experimental Investigation on the Performance and Emission Characteristics of a Compression Ignition Engine Using Waste-Based Tire Pyrolysis Fuel and Diesel Fuel Blends," Energies, MDPI, vol. 14(23), pages 1-9, November.
    9. Sharma, Abhishek & Murugan, S., 2017. "Effect of nozzle opening pressure on the behaviour of a diesel engine running with non-petroleum fuel," Energy, Elsevier, vol. 127(C), pages 236-246.
    10. Mohammad I. Jahirul & Farhad M. Hossain & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury, 2021. "A Review on the Thermochemical Recycling of Waste Tyres to Oil for Automobile Engine Application," Energies, MDPI, vol. 14(13), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    2. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    3. Mohammad I. Jahirul & Farhad M. Hossain & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury, 2021. "A Review on the Thermochemical Recycling of Waste Tyres to Oil for Automobile Engine Application," Energies, MDPI, vol. 14(13), pages 1-18, June.
    4. Martínez, Juan Daniel, 2021. "An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    6. Sharma, Abhishek & Murugan, S., 2017. "Effect of nozzle opening pressure on the behaviour of a diesel engine running with non-petroleum fuel," Energy, Elsevier, vol. 127(C), pages 236-246.
    7. Broumand, Mohsen & Khan, Muhammad Shahzeb & Yun, Sean & Hong, Zekai & Thomson, Murray J., 2021. "Feasibility of running a micro gas turbine on wood-derived fast pyrolysis bio-oils: Effect of the fuel spray formation and preparation," Renewable Energy, Elsevier, vol. 178(C), pages 775-784.
    8. Buffi, Marco & Seljak, Tine & Cappelletti, Alessandro & Bettucci, Lorenzo & Valera-Medina, Agustin & Katrašnik, Tomaž & Chiaramonti, David, 2018. "Performance and emissions of liquefied wood as fuel for a small scale gas turbine," Applied Energy, Elsevier, vol. 230(C), pages 1193-1204.
    9. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    10. Bhaduri, Subir & Jeanmart, Hervé & Contino, Francesco, 2018. "EGR control on operation of a tar tolerant HCCI engine with simulated syngas from biomass," Applied Energy, Elsevier, vol. 227(C), pages 159-167.
    11. Jun Cong Ge & Nag Jung Choi, 2020. "Soot Particle Size Distribution, Regulated and Unregulated Emissions of a Diesel Engine Fueled with Palm Oil Biodiesel Blends," Energies, MDPI, vol. 13(21), pages 1-16, November.
    12. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    13. Lehto, Jani & Oasmaa, Anja & Solantausta, Yrjö & Kytö, Matti & Chiaramonti, David, 2014. "Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass," Applied Energy, Elsevier, vol. 116(C), pages 178-190.
    14. Machin, Einara Blanco & Pedroso, Daniel Travieso & de Carvalho, João Andrade, 2017. "Energetic valorization of waste tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 306-315.
    15. Antoniou, N. & Stavropoulos, G. & Zabaniotou, A., 2014. "Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis – Critical review, analysis and recommendations for a hybrid dual system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1053-1073.
    16. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    17. Asokan, M.A. & Senthur Prabu, S. & Bade, Pushpa Kiran Kumar & Nekkanti, Venkata Mukesh & Gutta, Sri Sai Gopal, 2019. "Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine," Energy, Elsevier, vol. 173(C), pages 883-892.
    18. Wong, Ka In & Wong, Pak Kin & Cheung, Chun Shun & Vong, Chi Man, 2013. "Modeling and optimization of biodiesel engine performance using advanced machine learning methods," Energy, Elsevier, vol. 55(C), pages 519-528.
    19. Adhirath Mandal & HaengMuk Cho & Bhupendra Singh Chauhan, 2022. "Experimental Investigation of Multiple Fry Waste Soya Bean Oil in an Agricultural CI Engine," Energies, MDPI, vol. 15(9), pages 1-14, April.
    20. Ramalingam, Senthil & Rajendran, Silambarasan & Ganesan, Pranesh & Govindasamy, Mohan, 2018. "Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 775-788.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:980-990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.