IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp908-916.html
   My bibliography  Save this article

Early-stage decision making approach for the selection of optimally integrated biorefinery processes

Author

Listed:
  • Celebi, Ayse Dilan
  • Ensinas, Adriano Viana
  • Sharma, Shivom
  • Maréchal, François

Abstract

Lignocellulosic biorefineries are the best non-petroleum alternatives for a sustainable development. In the biorefinery process design, it is important to implement an algorithm that allows systematic generation, evaluation of energy conversion chains and making comparison of different pathways, ranking them according to different performance criteria. To achieve these goals, a methodology has been proposed to systematically define an ordered set of solutions using mixed integer linear programming models with integer cut constraints. In this study, we apply a systematic approach which adopts thermo-environomic optimization together with heat integration to assess the economic performance, environmental impact and energy requirement of several process options. Both sugars and syngas platforms are compared considering multiple products (energy services, valuable chemicals, fuels). A superstructure of different processes is developed and heat recovery potentials in the systems are analyzed using pinch analysis. Different pathways are evaluated and ranked according to different objective functions to understand the best combination of products and the synergies between them. Our results provide a set of candidate solutions according to minimum total cost and environmental impact as objective functions, considering benefit of heat integration between different pathways to obtain energy efficient biorefinery systems with improved process economics and reduced environmental impacts.

Suggested Citation

  • Celebi, Ayse Dilan & Ensinas, Adriano Viana & Sharma, Shivom & Maréchal, François, 2017. "Early-stage decision making approach for the selection of optimally integrated biorefinery processes," Energy, Elsevier, vol. 137(C), pages 908-916.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:908-916
    DOI: 10.1016/j.energy.2017.03.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217304565
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamelinck, Carlo N. & Faaij, André P.C. & den Uil, Herman & Boerrigter, Harold, 2004. "Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential," Energy, Elsevier, vol. 29(11), pages 1743-1771.
    2. Steubing, Bernhard & Ballmer, Isabel & Gassner, Martin & Gerber, Léda & Pampuri, Luca & Bischof, Sandro & Thees, Oliver & Zah, Rainer, 2014. "Identifying environmentally and economically optimal bioenergy plant sizes and locations: A spatial model of wood-based SNG value chains," Renewable Energy, Elsevier, vol. 61(C), pages 57-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Granacher, Julia & Nguyen, Tuong-Van & Castro-Amoedo, Rafael & Maréchal, François, 2022. "Overcoming decision paralysis—A digital twin for decision making in energy system design," Applied Energy, Elsevier, vol. 306(PA).
    2. Furtado Júnior, Juarez Corrêa & Palacio, José Carlos Escobar & Leme, Rafael Coradi & Lora, Electo Eduardo Silva & da Costa, José Eduardo Loureiro & Reyes, Arnaldo Martín Martínez & del Olmo, Oscar Alm, 2020. "Biorefineries productive alternatives optimization in the brazilian sugar and alcohol industry," Applied Energy, Elsevier, vol. 259(C).
    3. Bianca Köck & Anton Friedl & Sebastián Serna Loaiza & Walter Wukovits & Bettina Mihalyi-Schneider, 2023. "Automation of Life Cycle Assessment—A Critical Review of Developments in the Field of Life Cycle Inventory Analysis," Sustainability, MDPI, vol. 15(6), pages 1-40, March.
    4. Pavão, Leandro V. & Santos, Lucas F. & Oliveira, Cássia M. & Cruz, Antonio J.G. & Ravagnani, Mauro A.S.S. & Costa, Caliane B.B., 2023. "Flexible heat integration system in first-/second-generation ethanol production via screening pinch-based method and multiperiod model," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singlitico, Alessandro & Kilgallon, Ian & Goggins, Jamie & Monaghan, Rory F.D., 2019. "GIS-based techno-economic optimisation of a regional supply chain for large-scale deployment of bio-SNG in a natural gas network," Applied Energy, Elsevier, vol. 250(C), pages 1036-1052.
    2. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
    3. Amigun, Bamikole & Gorgens, Johann & Knoetze, Hansie, 2010. "Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance," Energy Policy, Elsevier, vol. 38(1), pages 312-322, January.
    4. Hoefnagels, Ric & Banse, Martin & Dornburg, Veronika & Faaij, André, 2013. "Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands," Energy Policy, Elsevier, vol. 59(C), pages 727-744.
    5. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    6. Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
    7. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
    8. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    9. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    10. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    11. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    12. Vitasari, Caecilia R. & Jurascik, Martin & Ptasinski, Krzysztof J., 2011. "Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock," Energy, Elsevier, vol. 36(6), pages 3825-3837.
    13. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2019. "The role of life cycle assessment in the sustainable transition to a decarbonised gas network through green gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 16-28.
    14. Isaksson, Johan & Pettersson, Karin & Mahmoudkhani, Maryam & Åsblad, Anders & Berntsson, Thore, 2012. "Integration of biomass gasification with a Scandinavian mechanical pulp and paper mill – Consequences for mass and energy balances and global CO2 emissions," Energy, Elsevier, vol. 44(1), pages 420-428.
    15. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2011. "Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2563-2587, August.
    16. Marcin Siedlecki & Wiebren De Jong & Adrian H.M. Verkooijen, 2011. "Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review," Energies, MDPI, vol. 4(3), pages 1-46, March.
    17. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2017. "Design and evaluation of a Fischer-Tropsch process for the production of waxes from biogas," Energy, Elsevier, vol. 132(C), pages 370-381.
    18. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    19. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    20. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:908-916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.