IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v126y2017icp202-207.html
   My bibliography  Save this article

Optimization of pyrolysis efficiency based on optical property of semicoke in terahertz region

Author

Listed:
  • Li, Yi Z.
  • Wu, Shi X.
  • Yu, Xiao L.
  • Bao, Ri M.
  • Wu, Zhi K.
  • Wang, Wei
  • Zhan, Hong L.
  • Zhao, Kun
  • Ma, Yue
  • Wu, Jian X.
  • Liu, Shao H.
  • Li, Shu Y.

Abstract

The correlation between pyrolysis conditions and fuel production has been extensively studied. Terahertz parameters, instead of thermal kinetic parameters, were investigated to reveal such interior correlation in this work. Different ventilating rate (V), heating rate (β) and final temperature (T) were controlled in several pyrolysis experiments of oil shale to prepare semicoke with varied amount of oil content, respectively. It was observed that V = 0.6 L/min, β = 15 °C/min and T = 550 °C were the expected conditions to produce fuel. The critical points in terahertz parameter corresponded well with that in oil yield. Intervals where increasing V, β and T contributed to oil yield best can be determined by comparing the trend of absorption index at 0.4, 0.6, 0.8, 1.0 THz. Therefore terahertz parameter of semicoke may characterize the organic matter in semicoke that may convert to additional fuel and terahertz method can be applied to optimize pyrolysis efficiency.

Suggested Citation

  • Li, Yi Z. & Wu, Shi X. & Yu, Xiao L. & Bao, Ri M. & Wu, Zhi K. & Wang, Wei & Zhan, Hong L. & Zhao, Kun & Ma, Yue & Wu, Jian X. & Liu, Shao H. & Li, Shu Y., 2017. "Optimization of pyrolysis efficiency based on optical property of semicoke in terahertz region," Energy, Elsevier, vol. 126(C), pages 202-207.
  • Handle: RePEc:eee:energy:v:126:y:2017:i:c:p:202-207
    DOI: 10.1016/j.energy.2017.03.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421730378X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, X.M. & Han, X.X. & Cui, Z.G., 2007. "New technology for the comprehensive utilization of Chinese oil shale resources," Energy, Elsevier, vol. 32(5), pages 772-777.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan, Honglei & Qin, Fankai & Chen, Sitong & Chen, Ru & Meng, Zhaohui & Miao, Xinyang & Zhao, Kun, 2022. "Two-step pyrolysis degradation mechanism of oil shale through comprehensive analysis of pyrolysis semi-cokes and pyrolytic gases," Energy, Elsevier, vol. 241(C).
    2. Jiang, Haiyan & Liu, Shuai & Wang, Jiao & You, Yuan & Yuan, Shibao, 2023. "Study on evolution mechanism of the pyrolysis of chang 7 oil shale from Ordos basin in China," Energy, Elsevier, vol. 272(C).
    3. Zhan, Honglei & Chen, Mengxi & Zhao, Kun & Li, Yizhang & Miao, Xinyang & Ye, Haimu & Ma, Yue & Hao, Shijie & Li, Hongfang & Yue, Wenzheng, 2018. "The mechanism of the terahertz spectroscopy for oil shale detection," Energy, Elsevier, vol. 161(C), pages 46-51.
    4. Zhan, Honglei & Wang, Yan & Chen, Mengxi & Chen, Ru & Zhao, Kun & Yue, Wenzheng, 2020. "An optical mechanism for detecting the whole pyrolysis process of oil shale," Energy, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongchun Cheng & Wensheng Wang & Guojin Tan & Chenglin Shi, 2018. "Assessing High- and Low-Temperature Properties of Asphalt Pavements Incorporating Waste Oil Shale as an Alternative Material in Jilin Province, China," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    2. Sun, Youhong & Bai, Fengtian & Lü, Xiaoshu & Jia, Chunxia & Wang, Qing & Guo, Mingyi & Li, Qiang & Guo, Wei, 2015. "Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model," Energy, Elsevier, vol. 82(C), pages 705-713.
    3. Han, X.X. & Jiang, X.M. & Cui, Z.G., 2009. "Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale," Applied Energy, Elsevier, vol. 86(11), pages 2381-2385, November.
    4. Song, Xianzhi & Zhang, Chengkai & Shi, Yu & Li, Gensheng, 2019. "Production performance of oil shale in-situ conversion with multilateral wells," Energy, Elsevier, vol. 189(C).
    5. Cheng, Wen-Long & Huang, Yong-Hua & Lu, De-Tang & Yin, Hong-Ru, 2011. "A novel analytical transient heat-conduction time function for heat transfer in steam injection wells considering the wellbore heat capacity," Energy, Elsevier, vol. 36(7), pages 4080-4088.
    6. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    7. Difei Zhao & Wei Zhang & Wanyu Xie & Chaowei Liu & Yingying Yang & Yingxing Chen & Chongyang Ren & Hongyu Chen & Qing Zhang & Sotiris Folinas, 2023. "Ecological Restoration and Transformation of Maoming Oil Shale Mining Area: Experience and Inspirations," Land, MDPI, vol. 12(2), pages 1-15, January.
    8. Fuke Dong & Zijun Feng & Dong Yang & Yangsheng Zhao & Derek Elsworth, 2018. "Permeability Evolution of Pyrolytically-Fractured Oil Shale under In Situ Conditions," Energies, MDPI, vol. 11(11), pages 1-9, November.
    9. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    10. Wang, Sha & Jiang, Xiumin & Han, Xiangxin & Tong, Jianhui, 2012. "Investigation of Chinese oil shale resources comprehensive utilization performance," Energy, Elsevier, vol. 42(1), pages 224-232.
    11. Wang, Guoying & Liu, Shaowei & Yang, Dong & Fu, Mengxiong, 2022. "Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China," Energy, Elsevier, vol. 239(PC).
    12. Kang, Shijie & Sun, Youhong & Qiao, Mingyang & Li, Shengli & Deng, Sunhua & Guo, Wei & Li, Jiasheng & He, Wentong, 2022. "The enhancement on oil shale extraction of FeCl3 catalyst in subcritical water," Energy, Elsevier, vol. 238(PA).
    13. Niu, Mengting & Wang, Sha & Han, Xiangxin & Jiang, Xiumin, 2013. "Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures," Applied Energy, Elsevier, vol. 111(C), pages 234-239.
    14. He, Lu & Ma, Yue & Yue, Changtao & Li, Shuyuan & Tang, Xun, 2022. "The heating performance and kinetic behaviour of oil shale during microwave pyrolysis," Energy, Elsevier, vol. 244(PB).
    15. de Almeida, Pedro & Silva, Pedro D., 2009. "The peak of oil production--Timings and market recognition," Energy Policy, Elsevier, vol. 37(4), pages 1267-1276, April.
    16. Han, Xiangxin & Niu, Mengting & Jiang, Xiumin, 2014. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 2. Energy and economic analysis," Energy, Elsevier, vol. 74(C), pages 788-794.
    17. Lu, Yang & Wang, Ying & Zhang, Jing & Xu, Ying & Li, Guoqiang & Zhang, Yongfa, 2019. "Investigation on the catalytic effect of AAEMs in Zhundong coal on the combustion characteristics of Changji oil shale and its kinetics," Energy, Elsevier, vol. 178(C), pages 89-100.
    18. Hou, Hongjuan & Du, Qiongjie & Huang, Chang & Zhang, Le & Hu, Eric, 2021. "An oil shale recovery system powered by solar thermal energy," Energy, Elsevier, vol. 225(C).
    19. Kang, Shijie & Zhang, Shijing & Wang, Zhendong & Li, Shengli & Zhao, Fangci & Yang, Jie & Zhou, Lingbo & Deng, Yang & Sun, Guidong & Yu, Hongdong, 2023. "Highly efficient catalytic pyrolysis of oil shale by CaCl2 in subcritical water," Energy, Elsevier, vol. 274(C).
    20. Hao Zeng & Wentong He & Lihong Yang & Jianzheng Su & Xianglong Meng & Xueqi Cen & Wei Guo, 2022. "Evolution of Biomarker Maturity Parameters and Feedback to the Pyrolysis Process for In Situ Conversion of Nongan Oil Shale in Songliao Basin," Energies, MDPI, vol. 15(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:126:y:2017:i:c:p:202-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.