IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v82y2015icp705-713.html
   My bibliography  Save this article

Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model

Author

Listed:
  • Sun, Youhong
  • Bai, Fengtian
  • Lü, Xiaoshu
  • Jia, Chunxia
  • Wang, Qing
  • Guo, Mingyi
  • Li, Qiang
  • Guo, Wei

Abstract

This study aimed to explore the combustion kinetics of organic matter in Huadian oil shale using thermogravimetric analysis. Increases in particle size or heating rate shifted the combustion process to a higher temperature, because of mass transfer resistance and thermal hysteresis. An investigation into activation energy using the Coats and Redfern, Starink, and Flynn–Wall–Ozawa methods indicated that oil shale combustion process is controlled by multiple reaction mechanisms. Therefore, multi-stage parallel reaction model and bi-Gaussian distribution function were introduced into the analysis of this complex combustion process. A four-stage parallel reaction model for bitumen, volatiles in kerogen, macromolecules and non-volatiles in kerogen, and fixed carbon was used to characterize the combustion process of organic matter in oil shale. The activation energies showed an increasing trend for the four sub-stages. The mechanism of each sub-stage established by Málek's method showed that the second and third sub-stages of the kerogen combustion proceeded via chemical reaction mechanisms and the 3D Zhuravlev–Lesokin–Tempelman model regardless of particle size and heating rate. This finding revealed the intrinsic reactivity and thermal stability of kerogen combustion.

Suggested Citation

  • Sun, Youhong & Bai, Fengtian & Lü, Xiaoshu & Jia, Chunxia & Wang, Qing & Guo, Mingyi & Li, Qiang & Guo, Wei, 2015. "Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model," Energy, Elsevier, vol. 82(C), pages 705-713.
  • Handle: RePEc:eee:energy:v:82:y:2015:i:c:p:705-713
    DOI: 10.1016/j.energy.2015.01.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215001048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.01.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Xiangxin & Niu, Mengting & Jiang, Xiumin, 2014. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 2. Energy and economic analysis," Energy, Elsevier, vol. 74(C), pages 788-794.
    2. López-González, D. & Fernandez-Lopez, M. & Valverde, J.L. & Sanchez-Silva, L., 2014. "Gasification of lignocellulosic biomass char obtained from pyrolysis: Kinetic and evolved gas analyses," Energy, Elsevier, vol. 71(C), pages 456-467.
    3. López-González, D. & Fernandez-Lopez, M. & Valverde, J.L. & Sanchez-Silva, L., 2014. "Pyrolysis of three different types of microalgae: Kinetic and evolved gas analysis," Energy, Elsevier, vol. 73(C), pages 33-43.
    4. Jiang, X.M. & Han, X.X. & Cui, Z.G., 2007. "New technology for the comprehensive utilization of Chinese oil shale resources," Energy, Elsevier, vol. 32(5), pages 772-777.
    5. Tran, Khanh-Quang & Bach, Quang-Vu & Trinh, Thuat T. & Seisenbaeva, Gulaim, 2014. "Non-isothermal pyrolysis of torrefied stump – A comparative kinetic evaluation," Applied Energy, Elsevier, vol. 136(C), pages 759-766.
    6. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres," Energy, Elsevier, vol. 48(1), pages 510-518.
    7. López, R. & Fernández, C. & Fierro, J. & Cara, J. & Martínez, O. & Sánchez, M.E., 2014. "Oxy-combustion of corn, sunflower, rape and microalgae bioresidues and their blends from the perspective of thermogravimetric analysis," Energy, Elsevier, vol. 74(C), pages 845-854.
    8. Wang, Sha & Jiang, Xiumin & Han, Xiangxin & Tong, Jianhui, 2012. "Investigation of Chinese oil shale resources comprehensive utilization performance," Energy, Elsevier, vol. 42(1), pages 224-232.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    2. Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.
    3. Lu, Yang & Wang, Ying & Zhang, Jing & Xu, Ying & Li, Guoqiang & Zhang, Yongfa, 2019. "Investigation on the catalytic effect of AAEMs in Zhundong coal on the combustion characteristics of Changji oil shale and its kinetics," Energy, Elsevier, vol. 178(C), pages 89-100.
    4. Jiang, Peng & Meng, Yang & Parvez, Ashak Mahmud & Dong, Xin-yue & Wu, Xin-yun & Xu, Meng-xia & Pang, Cheng Heng & Sun, Cheng-gong & Wu, Tao, 2021. "Influence of co-processing of coal and oil shale on combustion characteristics, kinetics and ash fusion behaviour," Energy, Elsevier, vol. 216(C).
    5. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    6. Yi, Honghong & Yang, Zhongyu & Tang, Xiaolong & Zhao, Shunzheng & Gao, Fengyu & Wang, Jiangen & Huang, Yonghai & Yang, Kun & Shi, Yiran & Xie, Xizhou, 2018. "Variations of apparent activation energy based on thermodynamics analysis of zeolitic imidazolate frameworks including pyrolysis and combustion," Energy, Elsevier, vol. 151(C), pages 782-798.
    7. Wang, Zhendong & Lü, Xiaoshu & Li, Qiang & Sun, Youhong & Wang, Yuan & Deng, Sunhua & Guo, Wei, 2020. "Downhole electric heater with high heating efficiency for oil shale exploitation based on a double-shell structure," Energy, Elsevier, vol. 211(C).
    8. Xu, Shaotao & Lü, Xiaoshu & Sun, Youhong & Guo, Wei & Li, Qiang & Liu, Lang & Kang, Shijie & Deng, Sunhua, 2023. "Optimization of temperature parameters for the autothermic pyrolysis in-situ conversion process of oil shale," Energy, Elsevier, vol. 264(C).
    9. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    2. Li, Xiuxi & Zhou, Huairong & Wang, Yajun & Qian, Yu & Yang, Siyu, 2015. "Thermoeconomic analysis of oil shale retorting processes with gas or solid heat carrier," Energy, Elsevier, vol. 87(C), pages 605-614.
    3. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    4. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    5. Wei Guo & Zhendong Wang & Youhong Sun & Xiaoshu Lü & Yuan Wang & Sunhua Deng & Qiang Li, 2020. "Effects of Packer Locations on Downhole Electric Heater Performance: Experimental Test and Economic Analysis," Energies, MDPI, vol. 13(2), pages 1-17, January.
    6. Zhao, Bingtao & Su, Yaxin & Liu, Dunyu & Zhang, Hang & Liu, Wang & Cui, Guomin, 2016. "SO2/NOx emissions and ash formation from algae biomass combustion: Process characteristics and mechanisms," Energy, Elsevier, vol. 113(C), pages 821-830.
    7. Han, Xiangxin & Niu, Mengting & Jiang, Xiumin, 2014. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 2. Energy and economic analysis," Energy, Elsevier, vol. 74(C), pages 788-794.
    8. Lu, Yang & Wang, Ying & Zhang, Jing & Xu, Ying & Li, Guoqiang & Zhang, Yongfa, 2019. "Investigation on the catalytic effect of AAEMs in Zhundong coal on the combustion characteristics of Changji oil shale and its kinetics," Energy, Elsevier, vol. 178(C), pages 89-100.
    9. Hao Zeng & Wentong He & Lihong Yang & Jianzheng Su & Xianglong Meng & Xueqi Cen & Wei Guo, 2022. "Evolution of Biomarker Maturity Parameters and Feedback to the Pyrolysis Process for In Situ Conversion of Nongan Oil Shale in Songliao Basin," Energies, MDPI, vol. 15(10), pages 1-20, May.
    10. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    11. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    12. Lu, Yang & Wang, Ying & Zhang, Jing & Wang, Qi & Zhao, Yuqiong & Zhang, Yongfa, 2020. "Investigation on the characteristics of pyrolysates during co-pyrolysis of Zhundong coal and Changji oil shale and its kinetics," Energy, Elsevier, vol. 200(C).
    13. Mu, Mao & Han, Xiangxin & Jiang, Xiumin, 2018. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 3. Exergy analysis," Energy, Elsevier, vol. 151(C), pages 930-939.
    14. Granados, David A. & Chejne, Farid & Mejía, Juan M. & Gómez, Carlos A. & Berrío, Ariel & Jurado, William J., 2014. "Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln," Energy, Elsevier, vol. 64(C), pages 615-625.
    15. Yongchun Cheng & Wensheng Wang & Guojin Tan & Chenglin Shi, 2018. "Assessing High- and Low-Temperature Properties of Asphalt Pavements Incorporating Waste Oil Shale as an Alternative Material in Jilin Province, China," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    16. Dupont, Capucine & Jacob, Sylvain & Marrakchy, Khalil Ould & Hognon, Céline & Grateau, Maguelone & Labalette, Françoise & Da Silva Perez, Denilson, 2016. "How inorganic elements of biomass influence char steam gasification kinetics," Energy, Elsevier, vol. 109(C), pages 430-435.
    17. López-González, D. & Avalos-Ramirez, A. & Giroir-Fendler, A. & Godbout, S. & Fernandez-Lopez, M. & Sanchez-Silva, L. & Valverde, J.L., 2015. "Combustion kinetic study of woody and herbaceous crops by thermal analysis coupled to mass spectrometry," Energy, Elsevier, vol. 90(P2), pages 1626-1635.
    18. Zhang, Shuo & Song, Shengyuan & Zhang, Wen & Zhao, Jinmin & Cao, Dongfang & Ma, Wenliang & Chen, Zijian & Hu, Ying, 2023. "Research on the inherent mechanism of rock mass deformation of oil shale in-situ mining under the condition of thermal-fluid-solid coupling," Energy, Elsevier, vol. 280(C).
    19. Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
    20. Barta-Rajnai, E. & Wang, L. & Sebestyén, Z. & Barta, Z. & Khalil, R. & Skreiberg, Ø. & Grønli, M. & Jakab, E. & Czégény, Z., 2017. "Comparative study on the thermal behavior of untreated and various torrefied bark, stem wood, and stump of Norway spruce," Applied Energy, Elsevier, vol. 204(C), pages 1043-1054.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:82:y:2015:i:c:p:705-713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.