IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i11p2381-2385.html
   My bibliography  Save this article

Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale

Author

Listed:
  • Han, X.X.
  • Jiang, X.M.
  • Cui, Z.G.

Abstract

The comprehensive utilization of oil shale is a new promising technology achieving high utilization-factors for both oil shale's chemical and energy potentials, and avoiding serious environmental impacts. For this technology, it is an urgent issue how to obtain shale oil with a high yield and as well as treat shale char efficiently and economically. In this present work, retorting experiments of three type I oil shales were performed using an aluminum retort, and the effect of retorting temperature, residence time, particle size and heating rate on the yield of shale oil was studied at low retorting temperatures ranging from 400 °C to 520 °C, respectively, at which shale char obtained has good combustion properties. The experimental data show that an increase in the retorting temperature, the residence time and the heating time has positive significant effect on improving the yield of shale oil, and a middle particle size is helpful for increasing the oil yield as well. The grey system method was applied to evaluate the effect of retorting factors on the yield of shale oil, showing that the retorting temperature is the most marked factor influencing the yield of shale oil.

Suggested Citation

  • Han, X.X. & Jiang, X.M. & Cui, Z.G., 2009. "Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale," Applied Energy, Elsevier, vol. 86(11), pages 2381-2385, November.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:11:p:2381-2385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00089-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, X.M. & Han, X.X. & Cui, Z.G., 2007. "New technology for the comprehensive utilization of Chinese oil shale resources," Energy, Elsevier, vol. 32(5), pages 772-777.
    2. Jaber, J. O. & Probert, S. D., 1999. "Environmental-impact assessment for the proposed oil-shale integrated tri-generation plant," Applied Energy, Elsevier, vol. 62(3), pages 169-209, March.
    3. Jaber, J.O. & Probert, S.D. & Williams, P.T., 1999. "Evaluation of oil yield from Jordanian oil shales," Energy, Elsevier, vol. 24(9), pages 761-781.
    4. Jaber, J. O. & Probert, S. D. & Williams, P. T., 1998. "Modelling oil-shale integrated tri-generator behaviour: predicted performance and financial assessment," Applied Energy, Elsevier, vol. 59(2-3), pages 73-95, February.
    5. Jaber, J. O. & Probert, S. D., 1997. "Exploitation of Jordanian oil-shales," Applied Energy, Elsevier, vol. 58(2-3), pages 161-175, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yu & Wang, Quanhai & Lu, Xiaofeng & Li, Jianbo & Liu, Zhuo, 2018. "Combustion behaviors and pollutant emission characteristics of low calorific oil shale and its semi-coke in a lab-scale fluidized bed combustor," Applied Energy, Elsevier, vol. 211(C), pages 631-638.
    2. Han, Xiangxin & Niu, Mengting & Jiang, Xiumin, 2014. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 2. Energy and economic analysis," Energy, Elsevier, vol. 74(C), pages 788-794.
    3. Saif, Tarik & Lin, Qingyang & Butcher, Alan R. & Bijeljic, Branko & Blunt, Martin J., 2017. "Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM," Applied Energy, Elsevier, vol. 202(C), pages 628-647.
    4. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    5. Cheng, Zhilong & Yang, Jian & Zhou, Lang & Liu, Yan & Wang, Qiuwang, 2016. "Characteristics of charcoal combustion and its effects on iron-ore sintering performance," Applied Energy, Elsevier, vol. 161(C), pages 364-374.
    6. Elena Arce, María & Saavedra, Ángeles & Míguez, José L. & Granada, Enrique, 2015. "The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 924-932.
    7. Mu, Mao & Han, Xiangxin & Jiang, Xiumin, 2018. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 3. Exergy analysis," Energy, Elsevier, vol. 151(C), pages 930-939.
    8. Guo, Wei & Yang, Qinchuan & Deng, Sunhua & Li, Qiang & Sun, Youhong & Su, Jianzheng & Zhu, Chaofan, 2022. "Experimental study of the autothermic pyrolysis in-situ conversion process (ATS) for oil shale recovery," Energy, Elsevier, vol. 258(C).
    9. Niu, Mengting & Wang, Sha & Han, Xiangxin & Jiang, Xiumin, 2013. "Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures," Applied Energy, Elsevier, vol. 111(C), pages 234-239.
    10. He, Lu & Ma, Yue & Yue, Changtao & Li, Shuyuan & Tang, Xun, 2022. "The heating performance and kinetic behaviour of oil shale during microwave pyrolysis," Energy, Elsevier, vol. 244(PB).
    11. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    12. Lu, Yang & Wang, Ying & Zhang, Jing & Wang, Qi & Zhao, Yuqiong & Zhang, Yongfa, 2020. "Investigation on the characteristics of pyrolysates during co-pyrolysis of Zhundong coal and Changji oil shale and its kinetics," Energy, Elsevier, vol. 200(C).
    13. Wen Li & Yuxi Liu & Siqi Xiao & Yu Zhang & Lihe Chai, 2018. "An Investigation of the Underlying Evolution of Shale Gas Research’s Domain Based on the Co-Word Network," Sustainability, MDPI, vol. 10(1), pages 1-23, January.
    14. Huang, HanWei & Yu, Hao & Xu, WenLong & Lyu, ChengSi & Micheal, Marembo & Xu, HengYu & Liu, He & Wu, HengAn, 2023. "A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process," Energy, Elsevier, vol. 268(C).
    15. Juan Jin & Weidong Jiang & Jiandong Liu & Junfeng Shi & Xiaowen Zhang & Wei Cheng & Ziniu Yu & Weixi Chen & Tingfu Ye, 2023. "Numerical Analysis of In Situ Conversion Process of Oil Shale Formation Based on Thermo-Hydro-Chemical Coupled Modelling," Energies, MDPI, vol. 16(5), pages 1-17, February.
    16. Wang, Sha & Jiang, Xiumin & Han, Xiangxin & Tong, Jianhui, 2012. "Investigation of Chinese oil shale resources comprehensive utilization performance," Energy, Elsevier, vol. 42(1), pages 224-232.
    17. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    18. Siyuan Chen & Fanghui Liu & Yang Zhou & Xiuping Lan & Shouzhen Li & Lulu Wang & Quan Xu & Yeqing Li & Yan Jin, 2022. "Graphene and Resin Coated Proppant with Electrically Conductive Properties for In-Situ Modification of Shale Oil," Energies, MDPI, vol. 15(15), pages 1-9, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sha & Jiang, Xiumin & Han, Xiangxin & Tong, Jianhui, 2012. "Investigation of Chinese oil shale resources comprehensive utilization performance," Energy, Elsevier, vol. 42(1), pages 224-232.
    2. Niu, Mengting & Wang, Sha & Han, Xiangxin & Jiang, Xiumin, 2013. "Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures," Applied Energy, Elsevier, vol. 111(C), pages 234-239.
    3. Han, Xiangxin & Niu, Mengting & Jiang, Xiumin, 2014. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 2. Energy and economic analysis," Energy, Elsevier, vol. 74(C), pages 788-794.
    4. Jaber, J. O. & Al-Sarkhi, A. & Akash, B. A. & Mohsen, M. S., 2004. "Medium-range planning economics of future electrical-power generation options," Energy Policy, Elsevier, vol. 32(3), pages 357-366, February.
    5. Mu, Mao & Han, Xiangxin & Jiang, Xiumin, 2018. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 3. Exergy analysis," Energy, Elsevier, vol. 151(C), pages 930-939.
    6. Jiang, X.M. & Han, X.X. & Cui, Z.G., 2007. "New technology for the comprehensive utilization of Chinese oil shale resources," Energy, Elsevier, vol. 32(5), pages 772-777.
    7. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    8. Al-Harahsheh, Adnan & Al-Otoom, Awni Y. & Shawabkeh, Reyad A., 2005. "Sulfur distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale," Energy, Elsevier, vol. 30(15), pages 2784-2795.
    9. Versan KOK, Mustafa, 2011. "Thermo-oxidative characterization and kinetics of tar sands," Energy, Elsevier, vol. 36(8), pages 5338-5342.
    10. Yongchun Cheng & Wensheng Wang & Guojin Tan & Chenglin Shi, 2018. "Assessing High- and Low-Temperature Properties of Asphalt Pavements Incorporating Waste Oil Shale as an Alternative Material in Jilin Province, China," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    11. Sun, Youhong & Bai, Fengtian & Lü, Xiaoshu & Jia, Chunxia & Wang, Qing & Guo, Mingyi & Li, Qiang & Guo, Wei, 2015. "Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model," Energy, Elsevier, vol. 82(C), pages 705-713.
    12. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    13. Zhang, Shuo & Song, Shengyuan & Zhang, Wen & Zhao, Jinmin & Cao, Dongfang & Ma, Wenliang & Chen, Zijian & Hu, Ying, 2023. "Research on the inherent mechanism of rock mass deformation of oil shale in-situ mining under the condition of thermal-fluid-solid coupling," Energy, Elsevier, vol. 280(C).
    14. Song, Xianzhi & Zhang, Chengkai & Shi, Yu & Li, Gensheng, 2019. "Production performance of oil shale in-situ conversion with multilateral wells," Energy, Elsevier, vol. 189(C).
    15. Cheng, Wen-Long & Huang, Yong-Hua & Lu, De-Tang & Yin, Hong-Ru, 2011. "A novel analytical transient heat-conduction time function for heat transfer in steam injection wells considering the wellbore heat capacity," Energy, Elsevier, vol. 36(7), pages 4080-4088.
    16. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    17. Jaber, J. O. & Probert, S. D. & Williams, P. T., 1998. "Gaseous fuels (derived from oil shale) for heavy-duty gas turbines and combined-cycle power generators," Applied Energy, Elsevier, vol. 60(1), pages 1-20, May.
    18. Jaber, J.O. & Probert, S.D. & Williams, P.T., 1999. "Evaluation of oil yield from Jordanian oil shales," Energy, Elsevier, vol. 24(9), pages 761-781.
    19. Difei Zhao & Wei Zhang & Wanyu Xie & Chaowei Liu & Yingying Yang & Yingxing Chen & Chongyang Ren & Hongyu Chen & Qing Zhang & Sotiris Folinas, 2023. "Ecological Restoration and Transformation of Maoming Oil Shale Mining Area: Experience and Inspirations," Land, MDPI, vol. 12(2), pages 1-15, January.
    20. Fuke Dong & Zijun Feng & Dong Yang & Yangsheng Zhao & Derek Elsworth, 2018. "Permeability Evolution of Pyrolytically-Fractured Oil Shale under In Situ Conditions," Energies, MDPI, vol. 11(11), pages 1-9, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:11:p:2381-2385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.