IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v211y2018icp631-638.html
   My bibliography  Save this article

Combustion behaviors and pollutant emission characteristics of low calorific oil shale and its semi-coke in a lab-scale fluidized bed combustor

Author

Listed:
  • Yang, Yu
  • Wang, Quanhai
  • Lu, Xiaofeng
  • Li, Jianbo
  • Liu, Zhuo

Abstract

Experiments on co-combustion of oil shale and its semi-coke were conducted in a lab-scale bubbling fluidized bed. Oil shale blend ratios from 0 to 100% at the interval of 25% were separately tested at 800, 850 and 900 °C, to clarify combustion behaviors and pollutant emission characteristics. Results indicated that as oil shale mass fraction increased, the combustion efficiency of samples firstly increased, and then decreased. Positive synergistic relationships between oil shale and its semi-coke were identified. The addition of oil shale could help reducing the SO2 emissions during co-combustion, while the NO emissions showed no significant change. Meanwhile, with temperature rising, the CO concentrations of samples with lower oil shale blend ratios (0, 25% and 50%) slightly decreased, on the contrary, for higher oil shale blend ratios (75% and 100%), the CO concentrations increased, however, the SO2 and NO concentrations got a monotonic increase for all the samples. Hence, from the view point of combustion efficiency and pollutant emission performances, it was recommended that the oil shale blend ratio was 50% and the bed temperature was about 800 °C. Besides, the ultra-low emission of SO2 and NO emitted from the co-combustion of oil shale and semi-coke were able to be achieved by adopting appropriate pollutant control measures.

Suggested Citation

  • Yang, Yu & Wang, Quanhai & Lu, Xiaofeng & Li, Jianbo & Liu, Zhuo, 2018. "Combustion behaviors and pollutant emission characteristics of low calorific oil shale and its semi-coke in a lab-scale fluidized bed combustor," Applied Energy, Elsevier, vol. 211(C), pages 631-638.
  • Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:631-638
    DOI: 10.1016/j.apenergy.2017.10.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917314927
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    2. Han, X.X. & Jiang, X.M. & Cui, Z.G., 2009. "Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale," Applied Energy, Elsevier, vol. 86(11), pages 2381-2385, November.
    3. Jiang, X.M. & Han, X.X. & Cui, Z.G., 2007. "New technology for the comprehensive utilization of Chinese oil shale resources," Energy, Elsevier, vol. 32(5), pages 772-777.
    4. Wang, Zhiyu & Wang, Jinsheng & Lan, Christopher & He, Ian & Ko, Vivien & Ryan, David & Wigston, Andrew, 2016. "A study on the impact of SO2 on CO2 injectivity for CO2 storage in a Canadian saline aquifer," Applied Energy, Elsevier, vol. 184(C), pages 329-336.
    5. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei, 2017. "Reduction of recycled NO over char during oxy-fuel fluidized bed combustion: Effects of operating parameters," Applied Energy, Elsevier, vol. 199(C), pages 310-322.
    6. Niu, Mengting & Wang, Sha & Han, Xiangxin & Jiang, Xiumin, 2013. "Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures," Applied Energy, Elsevier, vol. 111(C), pages 234-239.
    7. Ninduangdee, Pichet & Kuprianov, Vladimir I., 2016. "A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: Performance, emissions, and time-domain changes in the bed condition," Applied Energy, Elsevier, vol. 176(C), pages 34-48.
    8. Wang, Qing & Zhao, Weizhen & Liu, Hongpeng & Jia, Chunxia & Li, Shaohua, 2011. "Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion," Applied Energy, Elsevier, vol. 88(6), pages 2080-2087, June.
    9. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    10. Jin, Yuqi & Lu, Liang & Ma, Xiaojun & Liu, Hongmei & Chi, Yong & Yoshikawa, Kunio, 2013. "Effects of blending hydrothermally treated municipal solid waste with coal on co-combustion characteristics in a lab-scale fluidized bed reactor," Applied Energy, Elsevier, vol. 102(C), pages 563-570.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan, Honglei & Qin, Fankai & Chen, Sitong & Chen, Ru & Meng, Zhaohui & Miao, Xinyang & Zhao, Kun, 2022. "Two-step pyrolysis degradation mechanism of oil shale through comprehensive analysis of pyrolysis semi-cokes and pyrolytic gases," Energy, Elsevier, vol. 241(C).
    2. Hao, Runlong & Zhang, Zili & Zeng, Qinda & Mao, Yumin & He, Hongzhou & Mao, Xingzhou & Yang, Fan & Zhao, Yi, 2018. "Synergistic behaviors of anthracite and dried sawdust sludge during their co-combustion: Conversion ratio, micromorphology variation and constituents evolutions," Energy, Elsevier, vol. 153(C), pages 776-787.
    3. Liu, Zhuo & Li, Jianbo & Long, Xiaofei & Lu, Xiaofeng, 2022. "Mechanisms and characteristics of ash layer formation on bed particles during circulating fluidized bed combustion of Zhundong lignite," Energy, Elsevier, vol. 245(C).
    4. Wang, Chaowei & Wang, Chang'an & Feng, Qinqin & Mao, Qisen & Gao, Xinyue & Du, Yongbo & Li, Guangyu & Che, Defu, 2022. "Experimental evaluation on NOx formation and burnout characteristics of oxy-fuel co-combustion of ultra-low volatile carbon-based solid fuels and bituminous coal," Energy, Elsevier, vol. 248(C).
    5. Zhan, Honglei & Yang, Qi & Qin, Fankai & Meng, Zhaohui & Chen, Ru & Miao, Xinyang & Zhao, Kun & Yue, Wenzheng, 2022. "Comprehensive preparation and multiscale characterization of kerogen in oil shale," Energy, Elsevier, vol. 252(C).
    6. Zhan, Honglei & Wang, Yan & Chen, Mengxi & Chen, Ru & Zhao, Kun & Yue, Wenzheng, 2020. "An optical mechanism for detecting the whole pyrolysis process of oil shale," Energy, Elsevier, vol. 190(C).
    7. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mu, Mao & Han, Xiangxin & Jiang, Xiumin, 2018. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 3. Exergy analysis," Energy, Elsevier, vol. 151(C), pages 930-939.
    2. Han, Xiangxin & Niu, Mengting & Jiang, Xiumin, 2014. "Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 2. Energy and economic analysis," Energy, Elsevier, vol. 74(C), pages 788-794.
    3. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    4. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    5. Cheng, Zhilong & Yang, Jian & Zhou, Lang & Liu, Yan & Wang, Qiuwang, 2016. "Characteristics of charcoal combustion and its effects on iron-ore sintering performance," Applied Energy, Elsevier, vol. 161(C), pages 364-374.
    6. Difei Zhao & Wei Zhang & Wanyu Xie & Chaowei Liu & Yingying Yang & Yingxing Chen & Chongyang Ren & Hongyu Chen & Qing Zhang & Sotiris Folinas, 2023. "Ecological Restoration and Transformation of Maoming Oil Shale Mining Area: Experience and Inspirations," Land, MDPI, vol. 12(2), pages 1-15, January.
    7. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    8. Wang, Sha & Jiang, Xiumin & Han, Xiangxin & Tong, Jianhui, 2012. "Investigation of Chinese oil shale resources comprehensive utilization performance," Energy, Elsevier, vol. 42(1), pages 224-232.
    9. Niu, Mengting & Wang, Sha & Han, Xiangxin & Jiang, Xiumin, 2013. "Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures," Applied Energy, Elsevier, vol. 111(C), pages 234-239.
    10. He, Lu & Ma, Yue & Yue, Changtao & Li, Shuyuan & Tang, Xun, 2022. "The heating performance and kinetic behaviour of oil shale during microwave pyrolysis," Energy, Elsevier, vol. 244(PB).
    11. Lu, Yang & Wang, Ying & Zhang, Jing & Wang, Qi & Zhao, Yuqiong & Zhang, Yongfa, 2020. "Investigation on the characteristics of pyrolysates during co-pyrolysis of Zhundong coal and Changji oil shale and its kinetics," Energy, Elsevier, vol. 200(C).
    12. Jiang, Peng & Meng, Yang & Parvez, Ashak Mahmud & Dong, Xin-yue & Wu, Xin-yun & Xu, Meng-xia & Pang, Cheng Heng & Sun, Cheng-gong & Wu, Tao, 2021. "Influence of co-processing of coal and oil shale on combustion characteristics, kinetics and ash fusion behaviour," Energy, Elsevier, vol. 216(C).
    13. Siyuan Chen & Fanghui Liu & Yang Zhou & Xiuping Lan & Shouzhen Li & Lulu Wang & Quan Xu & Yeqing Li & Yan Jin, 2022. "Graphene and Resin Coated Proppant with Electrically Conductive Properties for In-Situ Modification of Shale Oil," Energies, MDPI, vol. 15(15), pages 1-9, August.
    14. He, Lu & Ma, Yue & Tan, Ting & Yue, Changtao & Li, Shuyuan & Tang, Xun, 2021. "Mechanisms of sulfur and nitrogen transformation during Longkou oil shale pyrolysis," Energy, Elsevier, vol. 232(C).
    15. Yongchun Cheng & Wensheng Wang & Guojin Tan & Chenglin Shi, 2018. "Assessing High- and Low-Temperature Properties of Asphalt Pavements Incorporating Waste Oil Shale as an Alternative Material in Jilin Province, China," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    16. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    17. Sun, Youhong & Bai, Fengtian & Lü, Xiaoshu & Jia, Chunxia & Wang, Qing & Guo, Mingyi & Li, Qiang & Guo, Wei, 2015. "Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model," Energy, Elsevier, vol. 82(C), pages 705-713.
    18. Liu, Chenglin & Zhao, Lei & Zhu, Shun & Shen, Yuefeng & Yu, Jianhua & Yang, Qingchun, 2023. "Advanced exergy analysis and optimization of a coal to ethylene glycol (CtEG) process," Energy, Elsevier, vol. 282(C).
    19. Yuan, Maobo & Wang, Chang’an & Zhao, Lin & Wang, Pengqian & Wang, Chaowei & Che, Defu, 2020. "Experimental and kinetics study of NO heterogeneous reduction by the blends of pyrolyzed and gasified semi-coke," Energy, Elsevier, vol. 207(C).
    20. Han, X.X. & Jiang, X.M. & Cui, Z.G., 2009. "Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale," Applied Energy, Elsevier, vol. 86(11), pages 2381-2385, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:631-638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.