IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v123y2017icp386-391.html
   My bibliography  Save this article

Qualitative determination of energy potential and methane generation from municipal solid waste (MSW) in Dhanbad (India)

Author

Listed:
  • Mboowa, Drake
  • Quereshi, Shireen
  • Bhattacharjee, Chiranjit
  • Tonny, Kukeera
  • Dutta, Suman

Abstract

Methane generation from waste landfills is one of the biggest contributors to global warming. The purpose of this study was twofold: (i) to investigate methane concentration from Municipal Solid Waste (MSW) at three landfills in Dhanbad city, India and (ii) to evaluate the amount of energy that could be recovered based on the MSW characteristics if it were to be incinerated. The waste samples were collected and analysed for composition, energy content, and methane concentration. Results from MSW characterisation revealed that the main component of Dhanbad MSW is organic waste, which made up to 75% of the waste by weight. Methane concentration and moisture content from Railway station (site 1) and Memco-more (site 2 and site 3) measured as 140.53, 18.18 and 20.28 ppm methane/g waste and 25.49, 3.40 and 2.96% dry weight respectively. The calorific value for the waste samples ranged between 10.7 and 13.0 MJ/kg. These findings confirm that the methane generated at the sites can be used for energy recovery. Additionally, the energy content of the MSW suggests that it is a suitable feedstock that can be utilized for electricity generation through combustion.

Suggested Citation

  • Mboowa, Drake & Quereshi, Shireen & Bhattacharjee, Chiranjit & Tonny, Kukeera & Dutta, Suman, 2017. "Qualitative determination of energy potential and methane generation from municipal solid waste (MSW) in Dhanbad (India)," Energy, Elsevier, vol. 123(C), pages 386-391.
  • Handle: RePEc:eee:energy:v:123:y:2017:i:c:p:386-391
    DOI: 10.1016/j.energy.2017.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217301834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. LeValley, Trevor L. & Richard, Anthony R. & Fan, Maohong, 2015. "Development of catalysts for hydrogen production through the integration of steam reforming of methane and high temperature water gas shift," Energy, Elsevier, vol. 90(P1), pages 748-758.
    2. Tsai, Wen-Tien & Kuo, Kuan-Chi, 2010. "An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan," Energy, Elsevier, vol. 35(12), pages 4824-4830.
    3. Lee, Tsung-Han & Huang, Sheng-Rung & Chen, Chiun-Hsun, 2013. "The experimental study on biogas power generation enhanced by using waste heat to preheat inlet gases," Renewable Energy, Elsevier, vol. 50(C), pages 342-347.
    4. Abánades, A. & Rubbia, C. & Salmieri, D., 2012. "Technological challenges for industrial development of hydrogen production based on methane cracking," Energy, Elsevier, vol. 46(1), pages 359-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Arashdeep & Basak, Prasenjit, 2022. "Conceptualization and techno-economic evaluation of municipal solid waste based microgrid," Energy, Elsevier, vol. 238(PB).
    2. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    3. Sahu, Pradeep & V, Prabu, 2021. "Techno-economic analysis of co-combustion of Indian coals with municipal solid waste in subcritical and supercritical based steam turbine power generating carbon-negative systems," Energy, Elsevier, vol. 233(C).
    4. Paul Thomas & Nirmala Soren, 2020. "An overview of municipal solid waste-to-energy application in Indian scenario," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 575-592, February.
    5. Gunawan Prayitno & Annisah Nurul Hakim & Christia Meidiana, 2021. "Community Participation on the Self Help Group of Methane Gas (Biogas) Management as Renewable Energy in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 200-211.
    6. Khatri, Krishan Lal & Muhammad, Amir Raza & Soomro, Shakir Ali & Tunio, Nadeem Ahmed & Ali, Muhammad Mubarak, 2021. "Investigation of possible solid waste power potential for distributed generation development to overcome the power crises of Karachi city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Prajapati, Kishan Kumar & Yadav, Monika & Singh, Rao Martand & Parikh, Priti & Pareek, Nidhi & Vivekanand, Vivekanand, 2021. "An overview of municipal solid waste management in Jaipur city, India - Current status, challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pirotta, F.J.C. & Ferreira, E.C. & Bernardo, C.A., 2013. "Energy recovery and impact on land use of Maltese municipal solid waste incineration," Energy, Elsevier, vol. 49(C), pages 1-11.
    2. Bermúdez, Vicente & Luján, José Manuel & Piqueras, Pedro & Campos, Daniel, 2014. "Pollutants emission and particle behavior in a pre-turbo aftertreatment light-duty diesel engine," Energy, Elsevier, vol. 66(C), pages 509-522.
    3. Botakoz Suleimenova & Berik Aimbetov & Daulet Zhakupov & Dhawal Shah & Yerbol Sarbassov, 2022. "Co-Firing of Refuse-Derived Fuel with Ekibastuz Coal in a Bubbling Fluidized Bed Reactor: Analysis of Emissions and Ash Characteristics," Energies, MDPI, vol. 15(16), pages 1-11, August.
    4. Roy, S. & Lam, Y.F. & Hossain, M.U. & Chan, J.C.L., 2022. "Comprehensive evaluation of electricity generation and emission reduction potential in the power sector using renewable alternatives in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Burak Atakan, 2019. "Compression–Expansion Processes for Chemical Energy Storage: Thermodynamic Optimization for Methane, Ethane and Hydrogen," Energies, MDPI, vol. 12(17), pages 1-21, August.
    6. Tsai, Wen-Tien, 2011. "An analysis of used lubricant recycling, energy utilization and its environmental benefit in Taiwan," Energy, Elsevier, vol. 36(7), pages 4333-4339.
    7. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Online fault detection and the economic analysis of grid-connected photovoltaic systems," Energy, Elsevier, vol. 134(C), pages 121-135.
    8. Marlena Owczuk & Anna Matuszewska & Stanisław Kruczyński & Wojciech Kamela, 2019. "Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor," Energies, MDPI, vol. 12(6), pages 1-12, March.
    9. Krzysztof Biernat & Izabela Samson-Bręk & Zdzisław Chłopek & Marlena Owczuk & Anna Matuszewska, 2021. "Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    10. Haiqian Ke & Shangze Dai & Haichao Yu, 2022. "Effect of green innovation efficiency on ecological footprint in 283 Chinese Cities from 2008 to 2018," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2841-2860, February.
    11. Liu, Xianglei & Cheng, Bo & Zhu, Qibin & Gao, Ke & Sun, Nan & Tian, Cheng & Wang, Jiaqi & Zheng, Hangbin & Wang, Xinrui & Dang, Chunzhuo & Xuan, Yimin, 2022. "Highly efficient solar-driven CO2 reforming of methane via concave foam reactors," Energy, Elsevier, vol. 261(PB).
    12. Zhang, Xiang & Kätelhön, Arne & Sorda, Giovanni & Helmin, Marta & Rose, Marcus & Bardow, André & Madlener, Reinhard & Palkovits, Regina & Mitsos, Alexander, 2018. "CO2 mitigation costs of catalytic methane decomposition," Energy, Elsevier, vol. 151(C), pages 826-838.
    13. Lee, Chan Hyun & Lee, Ki Bong, 2017. "Sorption-enhanced water gas shift reaction for high-purity hydrogen production: Application of a Na-Mg double salt-based sorbent and the divided section packing concept," Applied Energy, Elsevier, vol. 205(C), pages 316-322.
    14. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    15. Chen, Zong & Zhang, Rongjun & Xia, Guofu & Wu, Yu & Li, Hongwei & Sun, Zhao & Sun, Zhiqiang, 2021. "Vacuum promoted methane decomposition for hydrogen production with carbon separation: Parameter optimization and economic assessment," Energy, Elsevier, vol. 222(C).
    16. Braga, Lúcia Bollini & Silveira, Jose Luz & da Silva, Marcio Evaristo & Tuna, Celso Eduardo & Machin, Einara Blanco & Pedroso, Daniel Travieso, 2013. "Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 166-173.
    17. Solhee Kim & Rylie E. O. Pelton & Timothy M. Smith & Jimin Lee & Jeongbae Jeon & Kyo Suh, 2019. "Environmental Implications of the National Power Roadmap with Policy Directives for Battery Electric Vehicles (BEVs)," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    18. Artur Wodołażski & Małgorzata Magdziarczyk & Adam Smoliński, 2023. "Techno-Economic Analysis of Hydrogen Production from Swine Manure Biogas via Steam Reforming in Pilot-Scale Installation," Energies, MDPI, vol. 16(17), pages 1-13, September.
    19. Piotr Kordel & Radosław Wolniak, 2021. "Technology Entrepreneurship and the Performance of Enterprises in the Conditions of Covid-19 Pandemic: The Fuzzy Set Analysis of Waste to Energy Enterprises in Poland," Energies, MDPI, vol. 14(13), pages 1-22, June.
    20. Xin-gang, Zhao & Gui-wu, Jiang & Ang, Li & Yun, Li, 2016. "Technology, cost, a performance of waste-to-energy incineration industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 115-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:123:y:2017:i:c:p:386-391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.