IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v120y2017icp827-841.html
   My bibliography  Save this article

Mixing and evaporation analysis of a high-pressure SCR system using a hybrid LES-RANS approach

Author

Listed:
  • Kaario, Ossi Tapani
  • Vuorinen, Ville
  • Zhu, Lei
  • Larmi, Martti
  • Liu, Ronghou

Abstract

A hybrid Large Eddy Simulation (LES) – Reynolds-Averaged Navier-Stokes (RANS) method (HLR) has been applied to simulate an engine related selective catalytic reduction (SCR) system. Typical SCR systems utilize low pressure urea injection together with a mixer for vapor field homogenization. Simultaneously, it is also desirable to reduce spray-wall interaction to avoid urea crystallization. The present study considers an SCR system where a high pressure (150 bar) urea spray is injected towards hot exhaust gases in exhaust pipe. The system has been shown to work well in a previous experimental study but detailed characterization of the system is missing. The novelty of the present study rises from: 1) the creation of phase diagrams with single droplet simulations that predict the optimum operation regions for the SCR system, 2) validation of the HLR method in a high Reynolds number (Re=49,900) compressible pipe flow, 3) the use of HLR simulations in an engine SCR system for the first time, and 4) the detailed characterization of the present SCR system. As a result of the study, new non-dimensional timescale ratios are proposed to link the droplet size and liquid injection velocity to the exhaust pipe dimensions in future SCR systems.

Suggested Citation

  • Kaario, Ossi Tapani & Vuorinen, Ville & Zhu, Lei & Larmi, Martti & Liu, Ronghou, 2017. "Mixing and evaporation analysis of a high-pressure SCR system using a hybrid LES-RANS approach," Energy, Elsevier, vol. 120(C), pages 827-841.
  • Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:827-841
    DOI: 10.1016/j.energy.2016.11.138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216317959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.11.138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarjovaara, Teemu & Alantie, Jussi & Larmi, Martti, 2013. "Ethanol dual-fuel combustion concept on heavy duty engine," Energy, Elsevier, vol. 63(C), pages 76-85.
    2. Keskinen, Karri & Kaario, Ossi & Nuutinen, Mika & Vuorinen, Ville & Künsch, Zaira & Liavåg, Lars Ola & Larmi, Martti, 2016. "Mixture formation in a direct injection gas engine: Numerical study on nozzle type, injection pressure and injection timing effects," Energy, Elsevier, vol. 94(C), pages 542-556.
    3. Varna, Achinta & Spiteri, Alexander C. & Wright, Yuri M. & Dimopoulos Eggenschwiler, Panayotis & Boulouchos, Konstantinos, 2015. "Experimental and numerical assessment of impingement and mixing of urea–water sprays for nitric oxide reduction in diesel exhaust," Applied Energy, Elsevier, vol. 157(C), pages 824-837.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kapusta, Łukasz Jan, 2022. "Understanding the collapse of flash-boiling sprays formed by multi-hole injectors operating at low injection pressures," Energy, Elsevier, vol. 247(C).
    2. Kaushal Nishad & Marcus Stein & Florian Ries & Viatcheslav Bykov & Ulrich Maas & Olaf Deutschmann & Johannes Janicka & Amsini Sadiki, 2019. "Thermal Decomposition of a Single AdBlue ® Droplet Including Wall–Film Formation in Turbulent Cross-Flow in an SCR System," Energies, MDPI, vol. 12(13), pages 1-25, July.
    3. Rogóż, Rafał & Kapusta, Łukasz Jan & Bachanek, Jakub & Vankan, Joseph & Teodorczyk, Andrzej, 2020. "Improved urea-water solution spray model for simulations of selective catalytic reduction systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Giovanni Di Ilio & Vesselin K. Krastev & Giacomo Falcucci, 2019. "Evaluation of a Scale-Resolving Methodology for the Multidimensional Simulation of GDI Sprays," Energies, MDPI, vol. 12(14), pages 1-13, July.
    5. Mahmoud Gadalla & Jeevananthan Kannan & Bulut Tekgül & Shervin Karimkashi & Ossi Kaario & Ville Vuorinen, 2020. "Large-Eddy Simulation of ECN Spray A: Sensitivity Study on Modeling Assumptions," Energies, MDPI, vol. 13(13), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    2. Tianbo Wang & Lanchun Zhang & Qian Chen, 2020. "Effect of Valve Opening Manner and Sealing Method on the Steady Injection Characteristic of Gas Fuel Injector," Energies, MDPI, vol. 13(6), pages 1-12, March.
    3. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    4. Wenzhi Gao & Zhen Fu & Yong Li & Yuhuai Li & Jiahua Zou, 2022. "Progress of Performance, Emission, and Technical Measures of Hydrogen Fuel Internal-Combustion Engines," Energies, MDPI, vol. 15(19), pages 1-26, October.
    5. Behdad Shadidi & Hossein Haji Agha Alizade & Gholamhassan Najafi, 2021. "The Influence of Diesel–Ethanol Fuel Blends on Performance Parameters and Exhaust Emissions: Experimental Investigation and Multi-Objective Optimization of a Diesel Engine," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    6. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Chen, Wei & Bani, Stephen, 2017. "The influence of injection strategy on mixture formation and combustion process in a direct injection natural gas rotary engine," Applied Energy, Elsevier, vol. 187(C), pages 663-674.
    7. Pedrozo, Vinícius B. & May, Ian & Dalla Nora, Macklini & Cairns, Alasdair & Zhao, Hua, 2016. "Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load," Applied Energy, Elsevier, vol. 165(C), pages 166-182.
    8. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Pan, Zhenhua & Bani, Stephen & Chen, Wei & He, Ren, 2017. "Combined effect of injection timing and injection angle on mixture formation and combustion process in a direct injection (DI) natural gas rotary engine," Energy, Elsevier, vol. 128(C), pages 519-530.
    9. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    10. Yang, Kailin & Wang, Zhongshu & Zhang, Kechao & Wang, Dan & Xie, Fangxi & Xu, Yun & Yang, Kaiqiang, 2023. "Impact of natural gas injection timing on the combustion and emissions performance of a dual-direct-injection diesel/natural gas engine," Energy, Elsevier, vol. 270(C).
    11. Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
    12. Wei, Lijiang & Yao, Chunde & Han, Guopeng & Pan, Wang, 2016. "Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine," Energy, Elsevier, vol. 95(C), pages 223-232.
    13. Wei, Li & Yan, Fuwu & Hu, Jie & Xi, Guangwei & Liu, Bo & Zeng, Jiawei, 2017. "Nox conversion efficiency optimization based on NSGA-II and state-feedback nonlinear model predictive control of selective catalytic reduction system in diesel engine," Applied Energy, Elsevier, vol. 206(C), pages 959-971.
    14. Bodisco, Timothy & Tröndle, Philipp & Brown, Richard J., 2015. "Inter-cycle variability of ignition delay in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 84(C), pages 186-195.
    15. Jiang, Jibing & Li, Dinggen, 2016. "Theoretical analysis and experimental confirmation of exhaust temperature control for diesel vehicle NOx emissions reduction," Applied Energy, Elsevier, vol. 174(C), pages 232-244.
    16. Tongroon, Manida & Chuepeng, Sathaporn, 2022. "Adjacent combustion heat release and emissions over various load ranges in a premixed direct injection diesel engine: A comparison between gasoline and ethanol port injection," Energy, Elsevier, vol. 243(C).
    17. Tianbo Wang & Lanchun Zhang & Li Li & Jiahui Wu & Hongchen Wang, 2022. "Numerical Comparative Study on the In-Cylinder Mixing Performance of Port Fuel Injection and Direct Injection Gas-Fueled Engine," Energies, MDPI, vol. 15(14), pages 1-15, July.
    18. Rogóż, Rafał & Kapusta, Łukasz Jan & Bachanek, Jakub & Vankan, Joseph & Teodorczyk, Andrzej, 2020. "Improved urea-water solution spray model for simulations of selective catalytic reduction systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    19. Kim, Donghwan & Son, Yousang & Park, Sungwook, 2022. "Effects of operating parameters on in-cylinder flow characteristics of an optically accessible engine with a spray-guided injector," Energy, Elsevier, vol. 245(C).
    20. Liao, Yujun & Dimopoulos Eggenschwiler, Panayotis & Rentsch, Daniel & Curto, Francesco & Boulouchos, Konstantinos, 2017. "Characterization of the urea-water spray impingement in diesel selective catalytic reduction systems," Applied Energy, Elsevier, vol. 205(C), pages 964-975.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:120:y:2017:i:c:p:827-841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.