IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223002074.html
   My bibliography  Save this article

Impact of natural gas injection timing on the combustion and emissions performance of a dual-direct-injection diesel/natural gas engine

Author

Listed:
  • Yang, Kailin
  • Wang, Zhongshu
  • Zhang, Kechao
  • Wang, Dan
  • Xie, Fangxi
  • Xu, Yun
  • Yang, Kaiqiang

Abstract

Under the background of carbon neutrality, the natural gas (NG) is deemed as a competitive alternative fuel for the internal combustion engine (ICE) industry to respond increasingly stringent emission and fuel consumption regulations. To better understand the effect of the NG injection timing (SOING) on the combustion and emissions performance of a dual-direct-injection diesel/NG engine, a detailed investigation concerned with the SOING is carried out. The testing work was operated on a self-developed single-cylinder engine under a constant speed of 1200 r/min, and the SOING was changed from −120°CA ATDC to −60°CA ATDC. During the testing, the mass flow rate of NG was changed from 0.337 to 0.807 kg/h and the mass flow rate of diesel was changed from 0.48 to 1.22 kg/h, and the engine cylinder pressure, pressure rise rate, NOx, UHC, CO2, CO emissions were investigated. The results show that the engine performance was strongly affected by the NG injection timing. When the mass flow rate of diesel was kept at 0.82 kg/h, the mass flow rate of NG was kept at 0.467 kg/h, with the SOING was changed from −60°CA ATDC to −120°CA ATDC, the brake thermal efficiency increased from 25.09% to 28.75%, the CO2 emissions increase from 6.00 to 6.42%. Overall, higher thermal efficiency can be achieved by advancing NG injection timing.

Suggested Citation

  • Yang, Kailin & Wang, Zhongshu & Zhang, Kechao & Wang, Dan & Xie, Fangxi & Xu, Yun & Yang, Kaiqiang, 2023. "Impact of natural gas injection timing on the combustion and emissions performance of a dual-direct-injection diesel/natural gas engine," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002074
    DOI: 10.1016/j.energy.2023.126813
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223002074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malakoutirad, Mohammad & Bradley, Thomas H. & Hagen, Chris, 2015. "Design considerations for an engine-integral reciprocating natural gas compressor," Applied Energy, Elsevier, vol. 156(C), pages 129-137.
    2. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    3. Jinze Li & Longfei Deng & Jianjun Guo & Min Zhang & Zhenyuan Zi & Jie Zhang & Binyang Wu, 2020. "Effect of Injection Strategies in Diesel/NG Direct-Injection Engines on the Combustion Process and Emissions under Low-Load Operating Conditions," Energies, MDPI, vol. 13(4), pages 1-18, February.
    4. Wei, Haiqiao & Zhang, Ren & Chen, Lin & Pan, Jiaying & Wang, Xuan, 2021. "Effects of high ignition energy on lean combustion characteristics of natural gas using an optical engine with a high compression ratio," Energy, Elsevier, vol. 223(C).
    5. Keskinen, Karri & Kaario, Ossi & Nuutinen, Mika & Vuorinen, Ville & Künsch, Zaira & Liavåg, Lars Ola & Larmi, Martti, 2016. "Mixture formation in a direct injection gas engine: Numerical study on nozzle type, injection pressure and injection timing effects," Energy, Elsevier, vol. 94(C), pages 542-556.
    6. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    7. Zhiqiang Lin & Wanhua Su, 2003. "A study on the amount of pilot injection and its effects on rich and lean boundaries of the premixed CNG/air mixture for a CNG/diesel dual-fuel engine," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 20(3), pages 290-301.
    8. De Simio, Luigi & Iannaccone, Sabato, 2019. "Gaseous and particle emissions in low-temperature combustion diesel–HCNG dual-fuel operation with double pilot injection," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Poorghasemi, Kamran & Saray, Rahim Khoshbakhti & Ansari, Ehsan & Irdmousa, Behrouz Khoshbakht & Shahbakhti, Mehdi & Naber, Jeffery D., 2017. "Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine," Applied Energy, Elsevier, vol. 199(C), pages 430-446.
    10. Paul, Abhishek & Bose, Probir Kumar & Panua, Raj Sekhar & Banerjee, Rahul, 2013. "An experimental investigation of performance-emission trade off of a CI engine fueled by diesel–compressed natural gas (CNG) combination and diesel–ethanol blends with CNG enrichment," Energy, Elsevier, vol. 55(C), pages 787-802.
    11. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid, 2018. "Effect of swirl ratio on NG/diesel dual-fuel combustion at low to high engine load conditions," Applied Energy, Elsevier, vol. 229(C), pages 375-388.
    12. Rahnama, Pourya & Paykani, Amin & Reitz, Rolf D., 2017. "A numerical study of the effects of using hydrogen, reformer gas and nitrogen on combustion, emissions and load limits of a heavy duty natural gas/diesel RCCI engine," Applied Energy, Elsevier, vol. 193(C), pages 182-198.
    13. Ansari, Ehsan & Shahbakhti, Mahdi & Naber, Jeffrey, 2018. "Optimization of performance and operational cost for a dual mode diesel-natural gas RCCI and diesel combustion engine," Applied Energy, Elsevier, vol. 231(C), pages 549-561.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Motlagh, Tara Yazdani & Azadani, Leila N. & Yazdani, Kaveh, 2020. "Multi-objective optimization of diesel injection parameters in a natural gas/diesel reactivity controlled compression ignition engine," Applied Energy, Elsevier, vol. 279(C).
    2. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Shen, Zhaojie & Wang, Xinyan & Zhao, Hua & Lin, Bo & Shen, Yitao & Yang, Jianguo, 2021. "Numerical investigation of natural gas-diesel dual-fuel engine with different piston geometries and radial clearances," Energy, Elsevier, vol. 220(C).
    4. Liu, Jie & Wang, Junle & Zhao, Hongbo, 2018. "Optimization of the injection parameters and combustion chamber geometries of a diesel/natural gas RCCI engine," Energy, Elsevier, vol. 164(C), pages 837-852.
    5. Hosseini, S. Mohammad & Ahmadi, Rouhollah, 2017. "Performance and emissions characteristics in the combustion of co-fuel diesel-hydrogen in a heavy duty engine," Applied Energy, Elsevier, vol. 205(C), pages 911-925.
    6. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid & Liko, Brian, 2019. "On greenhouse gas emissions and thermal efficiency of natural gas/diesel dual-fuel engine at low load conditions: Coupled effect of injector rail pressure and split injection," Applied Energy, Elsevier, vol. 242(C), pages 216-231.
    7. Jin, Tai & Wu, Yunchao & Wang, Xujiang & Luo, Kai H. & Lu, Tianfeng & Luo, Kun & Fan, Jianren, 2019. "Ignition dynamics of DME/methane-air reactive mixing layer under reactivity controlled compression ignition conditions: Effects of cool flames," Applied Energy, Elsevier, vol. 249(C), pages 343-354.
    8. Ahmadi, Rouhollah & Hosseini, S. Mohammad, 2018. "Numerical investigation on adding/substituting hydrogen in the CDC and RCCI combustion in a heavy duty engine," Applied Energy, Elsevier, vol. 213(C), pages 450-468.
    9. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Lee, Chia-fon & Pang, Yuxin & Wu, Han & Nithyanandan, Karthik & Liu, Fushui, 2020. "An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine," Applied Energy, Elsevier, vol. 261(C).
    11. Ansari, Ehsan & Menucci, Tyler & Shahbakhti, Mahdi & Naber, Jeffrey, 2019. "Experimental investigation into effects of high reactive fuel on combustion and emission characteristics of the Diesel - Natural gas Reactivity Controlled Compression Ignition engine," Applied Energy, Elsevier, vol. 239(C), pages 948-956.
    12. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid, 2020. "Split diesel injection effect on knocking of natural gas/diesel dual-fuel engine at high load conditions," Applied Energy, Elsevier, vol. 279(C).
    13. Gharehghani, Ayat & Salahi, Mohammad Mahdi & Andwari, Amin Mahmoudzadeh & Mikulski, Maciej & Könnö, Juho, 2023. "Reactivity enhancement of natural gas/diesel RCCI engine by adding ozone species," Energy, Elsevier, vol. 274(C).
    14. Benbellil, Messaoud Abdelalli & Lounici, Mohand Said & Loubar, Khaled & Tazerout, Mohand, 2022. "Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine," Energy, Elsevier, vol. 243(C).
    15. Ganesh, Duraisamy & Ayyappan, P.R. & Murugan, Rangasamy, 2019. "Experimental investigation of iso-butanol/diesel reactivity controlled compression ignition combustion in a non-road diesel engine," Applied Energy, Elsevier, vol. 242(C), pages 1307-1319.
    16. Wei Tian & Hongchuan Zhang & Lenian Wang & Zhiqiang Han & Wenbin Yu, 2020. "Effect of Premixed n-Butanol Ratio on the Initial Stage of Combustion in a Light-Duty Butanol/Diesel Dual-Fuel Engine," Energies, MDPI, vol. 13(17), pages 1-10, August.
    17. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    19. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    20. Van Chien Pham & Jae-Hyuk Choi & Beom-Seok Rho & Jun-Soo Kim & Kyunam Park & Sang-Kyun Park & Van Vang Le & Won-Ju Lee, 2021. "A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load," Energies, MDPI, vol. 14(5), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.