IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225010400.html
   My bibliography  Save this article

Prediction of performance and emissions of ammonia-diesel dual-fuel engine using response surface methodology

Author

Listed:
  • Nie, Xuexuan
  • Bi, Yuhua
  • Shen, Lizhong
  • Lei, Jilin
  • Chen, Guisheng
  • Xiao, Yuhan

Abstract

Ammonia is a zero-carbon fuel with great prospects for engine applications. In this research work, an experiment was carried out to analyze the effects of single factor parameters like injection-pressure, injection-timing and ammonia substitution rate (ASR) on combustion, performance and emission of an ammonia-diesel dual-fuel (ADDF) engine. The experimental results showed that advancing the injection-timing and increasing the injection-pressure both can enhance braking thermal efficiency (BTE) and reduce brake specific fuel consumption (BSFC) and unburned ammonia emissions. Between the two, advancing the injection-timing led to greater improvement in combustion in ADDF engines. However, increasing the ammonia substitution rate reduced thermal efficiency and increased unburned ammonia emissions while decreasing NOx emissions. Besides, multi-factor interaction effects among injection-pressure, injection-timing, and ASR for the ADDF engine were analyzed using response surface methodology. Employing the optimizer, optimization was performed aiming to minimize NOx and NH3 emissions and simultaneously maximum BTE and minimum BSFC. Results indicated under conditions of the ASR at 30 %, the diesel injection-pressure of 120 MPa and the injection-timing of 4°CA BTDC, responses obtained were found to be optimum, showing the corresponding values of BTE, BSFC, THC, CO, NOx, and NH3 emissions were 38.3 %, 225.9 g/(kW·h), 35.1 ppm, 61.6 ppm, 381.6 ppm, and 6313.6 ppm, respectively. These findings provide valuable insights for optimizing the operation of ADDF engines to achieve better performance and reduced emissions.

Suggested Citation

  • Nie, Xuexuan & Bi, Yuhua & Shen, Lizhong & Lei, Jilin & Chen, Guisheng & Xiao, Yuhan, 2025. "Prediction of performance and emissions of ammonia-diesel dual-fuel engine using response surface methodology," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010400
    DOI: 10.1016/j.energy.2025.135398
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225010400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yuhua & Li, Jinlong & Wang, Guiyong & Chen, Guisheng & He, Shuchao, 2025. "Prediction of diesel particulate filter regeneration conditions and diesel engine performance under regeneration mode using AMSO-BPNN and combined with XGBoost," Applied Energy, Elsevier, vol. 377(PA).
    2. Zhang, Zhiqing & Wang, Su & Pan, Mingzhang & Lv, Junshuai & Lu, Kai & Ye, Yanshuai & Tan, Dongli, 2024. "Utilization of hydrogen-diesel blends for the improvements of a dual-fuel engine based on the improved Taguchi methodology," Energy, Elsevier, vol. 292(C).
    3. Nie, Xuexuan & Bi, Yuhua & Shen, Lizhong & Lei, Jilin & Wan, Mingding & Xiao, Yuhan & Chen, Guisheng, 2024. "Experimental study for optimizing EGR strategy in an ammonia-diesel dual-fuel engine under different altitudes," Energy, Elsevier, vol. 313(C).
    4. Xinyi Zhou & Tie Li & Run Chen & Yijie Wei & Xinran Wang & Ning Wang & Shiyan Li & Min Kuang & Wenming Yang, 2024. "Ammonia marine engine design for enhanced efficiency and reduced greenhouse gas emissions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Tan, Dongli & Wu, Yao & Lv, Junshuai & Li, Jian & Ou, Xiaoyu & Meng, Yujun & Lan, Guanglin & Chen, Yanhui & Zhang, Zhiqing, 2023. "Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology," Energy, Elsevier, vol. 263(PC).
    6. Skaugen, Geir & Bueie, Jonas & Reyes-Lúa, Adriana & Ditaranto, Mario, 2025. "Effect of use of zero-carbon and low-carbon fuels on the performance of compact combined cycles for power generation," Energy, Elsevier, vol. 316(C).
    7. Yang, Kailin & Wang, Zhongshu & Zhang, Kechao & Wang, Dan & Xie, Fangxi & Xu, Yun & Yang, Kaiqiang, 2023. "Impact of natural gas injection timing on the combustion and emissions performance of a dual-direct-injection diesel/natural gas engine," Energy, Elsevier, vol. 270(C).
    8. Weichao Wang & Guiyong Wang & Zhengjiang Wang & Jilin Lei & Junwei Huang & Xuexuan Nie & Lizhong Shen, 2022. "Optimization of Miller Cycle, EGR, and VNT on Performance and NOx Emission of a Diesel Engine for Range Extender at High Altitude," Energies, MDPI, vol. 15(23), pages 1-20, November.
    9. Yapicioglu, Arda & Dincer, Ibrahim, 2019. "A review on clean ammonia as a potential fuel for power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 96-108.
    10. Wang, Hechun & Hu, Deng & Yang, Chuanlei & Wang, Binbin & Duan, Baoyin & Wang, Yinyan, 2024. "Model construction and multi-objective performance optimization of a biodiesel-diesel dual-fuel engine based on CNN-GRU," Energy, Elsevier, vol. 301(C).
    11. Safieddin Ardebili, Seyed Mohammad & Babagiray, Mustafa & Aytav, Emre & Can, Özer & Boroiu, Andrei-Alexandru, 2022. "Multi-objective optimization of DI diesel engine performance and emission parameters fueled with Jet-A1 – Diesel blends," Energy, Elsevier, vol. 242(C).
    12. Lee, Jeongwoo & Park, Cheolwoong & Jang, Ilpum & Kim, Minki & Park, Gyeongtae & Kim, Yongrae, 2025. "Experimental research on the effect of diesel post-injection conditions on the efficiency and global warming potential in a single-cylinder four-stroke marine engine fueled with ammonia and diesel," Energy, Elsevier, vol. 314(C).
    13. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babagiray, Mustafa & Kocakulak, Tolga & Safieddin Ardebili, Seyed Mohammad & Solmaz, Hamit & Çınar, Can & Uyumaz, Ahmet, 2022. "Experimental and statistical investigation of different valve lifts on HCCI combustion, performance and exhaust emissions using response surface method," Energy, Elsevier, vol. 244(PB).
    2. Zhang, Zhiqing & Zhong, Weihuang & Mao, Chengfang & Xu, Yuejiang & Lu, Kai & Ye, Yanshuai & Guan, Wei & Pan, Mingzhang & Tan, Dongli, 2024. "Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF," Energy, Elsevier, vol. 294(C).
    3. Zhang, Zhiqing & Hu, Jingyi & Yang, Dayong & Yin, Zibin & Lu, Kai & Tan, Dongli, 2024. "A comprehensive assessment over the environmental impact and combustion efficiency of using ammonia/ hydrogen/diesel blends in a diesel engine," Energy, Elsevier, vol. 303(C).
    4. Chen, Yanhui & Zhang, Jian & Zhang, Zhiqing & Zhang, Bin & Hu, Jingyi & Zhong, Weihuang & Ye, Yanshuai, 2024. "Effect of ammonia energy ratio and load on combustion and emissions of an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 302(C).
    5. Zhou, Song & Sun, Ang & Lou, Chunjing & Zhou, Peilin & Xi, Hongyuan & Shreka, Majed & Wang, Haibin & Zhu, Yuanqing & Feng, Yongming, 2024. "Gaseous and particulate pollutant emissions from ocean-going tankers in the context of carbon reduction: Main engine, auxiliary engine, and auxiliary boiler," Energy, Elsevier, vol. 313(C).
    6. Zhang, Zhiqing & Liu, Hui & Yang, Dayong & Li, Junming & Lu, Kai & Ye, Yanshuai & Tan, Dongli, 2024. "Performance enhancements of power density and exergy efficiency for high-temperature proton exchange membrane fuel cell based on RSM-NSGA III," Energy, Elsevier, vol. 301(C).
    7. Nie, Xuexuan & Bi, Yuhua & Shen, Lizhong & Lei, Jilin & Wan, Mingding & Xiao, Yuhan & Chen, Guisheng, 2024. "Experimental study for optimizing EGR strategy in an ammonia-diesel dual-fuel engine under different altitudes," Energy, Elsevier, vol. 313(C).
    8. Jia, Guohai & Gao, Sheng & Shu, Xiong & Ren, Bing & Zhang, Bin & Ma, Guangyu & Zhang, Jian & Liu, Hui & Li, Dongmei, 2024. "Multi-objective optimization of emission parameters of a diesel engine using oxygenated fuel and pilot injection strategy based on RSM-NSGA III," Energy, Elsevier, vol. 293(C).
    9. Fan, Lulu & Shi, Weishuo & Jing, Jun & Dong, Zhenhua & Yuan, Jinwei & Qu, Lingbo, 2025. "An artificial intelligence strategy for multi-objective optimization of Urea-SCR for vehicle diesel engine by RSM-VIKOR," Energy, Elsevier, vol. 317(C).
    10. Xiao, Lu & Yang, Leiqi & Yang, Jiaze & Tang, Aikun & Cai, Tao & Liu, Houlin & Tan, Minggao & Gan, Hailong, 2025. "Experimental analysis of critical operating parameters on heat storage and oxidation performances in a VAM-fueled flow-reversal reactor," Energy, Elsevier, vol. 322(C).
    11. Nie, Xuexuan & Bi, Yuhua & Lei, Jilin & Shen, Lizhong & Chen, Guisheng & Liu, Shaohua & Fu, Quan, 2025. "Generation characteristics of nitrogen-containing pollutants in ammonia-diesel dual-fuel engines under different operating conditions," Energy, Elsevier, vol. 324(C).
    12. Wen, Mingsheng & Liu, Haifeng & Cui, Yanqing & Ming, Zhenyang & Wang, Wenjie & Wang, Xinyan & Zhao, Hua & Yao, Mingfa, 2024. "A study on optical diagnostics and numerical simulation of dual fuel combustion using ammonia and n-heptane," Energy, Elsevier, vol. 313(C).
    13. Zhang, Zhiqing & Hu, Jingyi & Wang, Yuguo & Pan, Mingzhang & Lu, Kai & Ye, Yanshuai & Yin, Zibin, 2025. "An artificial intelligence-based strategy for multi-objective optimization of diesel engine fueled with ammonia-diesel-hydrogen blended fuel," Energy, Elsevier, vol. 318(C).
    14. Lee, Boreum & Park, Junhyung & Lee, Hyunjun & Byun, Manhee & Yoon, Chang Won & Lim, Hankwon, 2019. "Assessment of the economic potential: COx-free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    16. Jie Hu & Wentong Cao & Feng Jiang & Lingling Hu & Qian Chen & Weiguang Zheng & Junming Zhou, 2023. "Study on Multi-Objective Optimization of Power System Parameters of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    17. Li, Shiyan & Wang, Ning & Li, Tie & Chen, Run & Yi, Ping & Huang, Shuai & Zhou, Xinyi, 2024. "Experimental investigation on liquid length of direct-injection ammonia spray under engine-like conditions," Energy, Elsevier, vol. 301(C).
    18. Elbanna, Ahmed Mohammed & Cheng, Xiaobei, 2024. "The role of charge reactivity in ammonia/diesel dual fuel combustion in compression ignition engine," Energy, Elsevier, vol. 306(C).
    19. Biao Li & Pengfei Wang & Peng Sun & Rui Meng & Jun Zeng & Guanghui Liu, 2023. "A Model for Determining the Optimal Decommissioning Interval of Energy Equipment Based on the Whole Life Cycle Cost," Sustainability, MDPI, vol. 15(6), pages 1-28, March.
    20. Monika Andrych-Zalewska & Zdzislaw Chlopek & Jacek Pielecha & Jerzy Merkisz, 2023. "Influence of the In-Cylinder Catalyst on the Aftertreatment Efficiency of a Diesel Engine," Energies, MDPI, vol. 16(6), pages 1-21, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.