IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v114y2016icp923-934.html
   My bibliography  Save this article

Technical and economic assessments of grid-connected photovoltaic power plants: Iran case study

Author

Listed:
  • Edalati, Saeed
  • Ameri, Mehran
  • Iranmanesh, Masoud
  • Tarmahi, Hakimeh
  • Gholampour, Maysam

Abstract

In this paper, the behavior of the main parts of a grid-connected PV system has been investigated based on theoretical and field studies in Iran. In order to anticipate the output power from the PV plant, a computer code is validated by experimental data and a good agreement has been observed. In addition, the validated model is applied in order to investigate the technical and economic feasibility of a 10 MWp grid-connected PV power plant and as well as profit expectations of investments in different cities, using recently updated policies in Iran. The capacity factor (CF) of the modeled PV power plants ranged from a lower value of 12% in Ramsar to a maximum value of 23.13% in Kerman. The levelized cost of energy (LCOE) varied from 19.92 c$/kWh in the south-eastern part of Iran to 38.38 c$/kWh in northern part. However, the lowest value of LCOE may only reach the grid parity for high selling prices of electricity. The present work also includes an economic sensitivity analysis on major economic parameters in order to analyze the response of the simulation to different initial settings. This analysis is directed towards investors in PV power plants in Iran or other regions.

Suggested Citation

  • Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Tarmahi, Hakimeh & Gholampour, Maysam, 2016. "Technical and economic assessments of grid-connected photovoltaic power plants: Iran case study," Energy, Elsevier, vol. 114(C), pages 923-934.
  • Handle: RePEc:eee:energy:v:114:y:2016:i:c:p:923-934
    DOI: 10.1016/j.energy.2016.08.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216311549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.08.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parrado, C. & Girard, A. & Simon, F. & Fuentealba, E., 2016. "2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile," Energy, Elsevier, vol. 94(C), pages 422-430.
    2. Mani, Monto & Pillai, Rohit, 2010. "Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3124-3131, December.
    3. Alam Hossain Mondal, Md. & Sadrul Islam, A.K.M., 2011. "Potential and viability of grid-connected solar PV system in Bangladesh," Renewable Energy, Elsevier, vol. 36(6), pages 1869-1874.
    4. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    5. Orioli, Aldo & Di Gangi, Alessandra, 2015. "The recent change in the Italian policies for photovoltaics: Effects on the payback period and levelized cost of electricity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 93(P2), pages 1989-2005.
    6. Quesada, B. & Sánchez, C. & Cañada, J. & Royo, R. & Payá, J., 2011. "Experimental results and simulation with TRNSYS of a 7.2Â kWp grid-connected photovoltaic system," Applied Energy, Elsevier, vol. 88(5), pages 1772-1783, May.
    7. Sharma, Vikrant & Chandel, S.S., 2013. "Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India," Energy, Elsevier, vol. 55(C), pages 476-485.
    8. Santos, João M. & Moura, Pedro S. & Almeida, Aníbal T. de, 2014. "Technical and economic impact of residential electricity storage at local and grid level for Portugal," Applied Energy, Elsevier, vol. 128(C), pages 254-264.
    9. Peters, Michael & Schmidt, Tobias S. & Wiederkehr, David & Schneider, Malte, 2011. "Shedding light on solar technologies'A techno-economic assessment and its policy implications," Energy Policy, Elsevier, vol. 39(10), pages 6422-6439, October.
    10. Pillai, Gobind G. & Putrus, Ghanim A. & Georgitsioti, Tatiani & Pearsall, Nicola M., 2014. "Near-term economic benefits from grid-connected residential PV (photovoltaic) systems," Energy, Elsevier, vol. 68(C), pages 832-843.
    11. Kim, Ju-Young & Jeon, Gyu-Yeob & Hong, Won-Hwa, 2009. "The performance and economical analysis of grid-connected photovoltaic systems in Daegu, Korea," Applied Energy, Elsevier, vol. 86(2), pages 265-272, February.
    12. Su, Yan & Chan, Lai-Cheong & Shu, Lianjie & Tsui, Kwok-Leung, 2012. "Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems," Applied Energy, Elsevier, vol. 93(C), pages 319-326.
    13. Zhao, Xingang & Zeng, Yiping & Zhao, Di, 2015. "Distributed solar photovoltaics in China: Policies and economic performance," Energy, Elsevier, vol. 88(C), pages 572-583.
    14. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.
    15. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    16. Li, Zhe & Boyle, Fergal & Reynolds, Anthony, 2011. "Domestic application of solar PV systems in Ireland: The reality of their economic viability," Energy, Elsevier, vol. 36(10), pages 5865-5876.
    17. Paudel, Ananda Mani & Sarper, Hűseyin, 2013. "Economic analysis of a grid-connected commercial photovoltaic system at Colorado State University-Pueblo," Energy, Elsevier, vol. 52(C), pages 289-296.
    18. Rose, Amy & Stoner, Robert & Pérez-Arriaga, Ignacio, 2016. "Prospects for grid-connected solar PV in Kenya: A systems approach," Applied Energy, Elsevier, vol. 161(C), pages 583-590.
    19. Li, Danny H.W. & Cheung, K.L. & Lam, Tony N.T. & Chan, Wilco W.H., 2012. "A study of grid-connected photovoltaic (PV) system in Hong Kong," Applied Energy, Elsevier, vol. 90(1), pages 122-127.
    20. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    21. Bakos, G.C., 2009. "Distributed power generation: A case study of small scale PV power plant in Greece," Applied Energy, Elsevier, vol. 86(9), pages 1757-1766, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
    2. Ding, Liping & Zhang, Zumeng & Dai, Qiyao & Zhu, Yuxuan & Shi, Yin, 2023. "Alternative operational modes for Chinese PV poverty alleviation power stations: Economic impacts on stakeholders," Utilities Policy, Elsevier, vol. 82(C).
    3. Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Luca Cedola, 2019. "Performance and Economic Assessment of a Grid-Connected Photovoltaic Power Plant with a Storage System: A Comparison between the North and the South of Italy," Energies, MDPI, vol. 12(12), pages 1-25, June.
    4. Sheikhhoseini, Mousa & Rashidinejad, Masoud & Ameri, Mehran & Abdollahi, Amir, 2018. "Economic analysis of support policies for residential photovoltaic systems in Iran," Energy, Elsevier, vol. 165(PA), pages 853-866.
    5. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Sadeghi, Zeinolabedin, 2017. "Solar photovoltaic power plants in five top oil-producing countries in Middle East: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1271-1280.
    6. Hamed Khodayar Sahebi & Siamak Hoseinzadeh & Hossein Ghadamian & Mohammad Hadi Ghasemi & Farbod Esmaeilion & Davide Astiaso Garcia, 2021. "Techno-Economic Analysis and New Design of a Photovoltaic Power Plant by a Direct Radiation Amplification System," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    7. Mostafa Esmaeili Shayan & Gholamhassan Najafi & Barat Ghobadian & Shiva Gorjian & Mohamed Mazlan & Mehdi Samami & Alireza Shabanzadeh, 2022. "Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    8. Tri Tjahjono & Mehdi Ali Ehyaei & Abolfazl Ahmadi & Siamak Hoseinzadeh & Saim Memon, 2021. "Thermo-Economic Analysis on Integrated CO 2 , Organic Rankine Cycles, and NaClO Plant Using Liquefied Natural Gas," Energies, MDPI, vol. 14(10), pages 1-24, May.
    9. M. Ehyaei & M. Kasaeian & Stéphane Abanades & Armin Razmjoo & Hamed Afshari & Marc Rosen & Biplab Das, 2023. "Natural gas‐fueled multigeneration for reducing environmental effects of brine and increasing product diversity: Thermodynamic and economic analyses," Post-Print hal-04113893, HAL.
    10. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    11. Fan, Guangli & Ahmadi, A. & Ehyaei, M.A. & Das, Biplab, 2021. "Energy, exergy, economic and exergoenvironmental analyses of polygeneration system integrated gas cycle, absorption chiller, and Copper-Chlorine thermochemical cycle to produce power, cooling, and hyd," Energy, Elsevier, vol. 222(C).
    12. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    13. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Harold Espargilliere & Law Torres Sevilla & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A General Framework for Multi-Criteria Based Feasibility Studies for Solar Energy Projects: Application to a Real-World Solar Farm," Energies, MDPI, vol. 14(8), pages 1-34, April.
    14. Li, Changsheng & Wang, Haiyu & Miao, Hong & Ye, Bin, 2017. "The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China," Applied Energy, Elsevier, vol. 190(C), pages 204-212.
    15. Emmanuel, Michael & Akinyele, Daniel & Rayudu, Ramesh, 2017. "Techno-economic analysis of a 10 kWp utility interactive photovoltaic system at Maungaraki school, Wellington, New Zealand," Energy, Elsevier, vol. 120(C), pages 573-583.
    16. Sreenath, S. & Sudhakar, K. & AF, Yusop, 2021. "7E analysis of a conceptual utility-scale land-based solar photovoltaic power plant," Energy, Elsevier, vol. 219(C).
    17. Ameur, Arechkik & Berrada, Asmae & Bouaichi, Abdellatif & Loudiyi, Khalid, 2022. "Long-term performance and degradation analysis of different PV modules under temperate climate," Renewable Energy, Elsevier, vol. 188(C), pages 37-51.
    18. Martins, Florinda, 2017. "PV sector in the European Union countries – Clusters and efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 173-177.
    19. Rehman, Shafiqur & Ahmed, M.A. & Mohamed, Mohand H. & Al-Sulaiman, Fahad A., 2017. "Feasibility study of the grid connected 10MW installed capacity PV power plants in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 319-329.
    20. Talavera, D.L. & Pérez-Higueras, P. & Almonacid, F. & Fernández, E.F., 2017. "A worldwide assessment of economic feasibility of HCPV power plants: Profitability and competitiveness," Energy, Elsevier, vol. 119(C), pages 408-424.
    21. Saleheen, Mohammed Zeehan & Salema, Arshad Adam & Mominul Islam, Shah Mohammad & Sarimuthu, Charles R. & Hasan, Md Zobaer, 2021. "A target-oriented performance assessment and model development of a grid-connected solar PV (GCPV) system for a commercial building in Malaysia," Renewable Energy, Elsevier, vol. 171(C), pages 371-382.
    22. Erdem Cuce & Pinar Mert Cuce & Shaik Saboor & Aritra Ghosh & Yahya Sheikhnejad, 2022. "Floating PVs in Terms of Power Generation, Environmental Aspects, Market Potential, and Challenges," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    23. Vaziri Rad, Mohammad Amin & Toopshekan, Ashkan & Rahdan, Parisa & Kasaeian, Alibakhsh & Mahian, Omid, 2020. "A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    24. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    2. Rehman, Shafiqur & Ahmed, M.A. & Mohamed, Mohand H. & Al-Sulaiman, Fahad A., 2017. "Feasibility study of the grid connected 10MW installed capacity PV power plants in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 319-329.
    3. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    4. Emmanuel, Michael & Akinyele, Daniel & Rayudu, Ramesh, 2017. "Techno-economic analysis of a 10 kWp utility interactive photovoltaic system at Maungaraki school, Wellington, New Zealand," Energy, Elsevier, vol. 120(C), pages 573-583.
    5. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    6. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    7. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    8. Purohit, Ishan & Purohit, Pallav, 2018. "Performance assessment of grid-interactive solar photovoltaic projects under India’s national solar mission," Applied Energy, Elsevier, vol. 222(C), pages 25-41.
    9. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2015. "Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete," Energy, Elsevier, vol. 90(P2), pages 1435-1455.
    10. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    11. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    12. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    13. García-Gracia, M. & El Halabi, N. & Khodr, H.M. & Sanz, Jose Fco, 2010. "Improvement of large scale solar installation model for ground current analysis," Applied Energy, Elsevier, vol. 87(11), pages 3467-3474, November.
    14. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Orioli, Aldo & Di Gangi, Alessandra, 2017. "Six-years-long effects of the Italian policies for photovoltaics on the grid parity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 130(C), pages 55-75.
    16. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    17. Rabbani, Rabab & Zeeshan, Muhammad, 2022. "Impact of policy changes on financial viability of wind power plants in Pakistan," Renewable Energy, Elsevier, vol. 193(C), pages 789-806.
    18. Barletta, M. & Puopolo, M. & Tagliaferri, V. & Vesco, S., 2014. "Retrofitting of solar glasses by protective anti-soiling and -graffiti coatings," Renewable Energy, Elsevier, vol. 66(C), pages 443-453.
    19. Haegermark, Maria & Kovacs, Peter & Dalenbäck, Jan-Olof, 2017. "Economic feasibility of solar photovoltaic rooftop systems in a complex setting: A Swedish case study," Energy, Elsevier, vol. 127(C), pages 18-29.
    20. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:114:y:2016:i:c:p:923-934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.