CO2 emission evaluation of energy conserving measures in buildings connected to a district heating system – Case study of a multi-dwelling building in Sweden
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.05.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Difs, Kristina & Bennstam, Marcus & Trygg, Louise & Nordenstam, Lena, 2010. "Energy conservation measures in buildings heated by district heating – A local energy system perspective," Energy, Elsevier, vol. 35(8), pages 3194-3203.
- Mahapatra, K., 2015. "Energy use and CO2 emission of new residential buildings built under specific requirements – The case of Växjö municipality, Sweden," Applied Energy, Elsevier, vol. 152(C), pages 31-38.
- Lundström, Lukas & Wallin, Fredrik, 2016. "Heat demand profiles of energy conservation measures in buildings and their impact on a district heating system," Applied Energy, Elsevier, vol. 161(C), pages 290-299.
- Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
- Joelsson, Anna & Gustavsson, Leif, 2009. "District heating and energy efficiency in detached houses of differing size and construction," Applied Energy, Elsevier, vol. 86(2), pages 126-134, February.
- Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
- Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2014. "Effects of heat and electricity saving measures in district-heated multistory residential buildings," Applied Energy, Elsevier, vol. 118(C), pages 57-67.
- Åberg, M. & Henning, D., 2011. "Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings," Energy Policy, Elsevier, vol. 39(12), pages 7839-7852.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jozef Švajlenka & Mária Kozlovská, 2020. "Analysis of the Energy Balance of Constructions Based on Wood during Their Use in Connection with CO 2 Emissions," Energies, MDPI, vol. 13(18), pages 1-16, September.
- Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
- Guelpa, Elisa & Verda, Vittorio, 2020. "Automatic fouling detection in district heating substations: Methodology and tests," Applied Energy, Elsevier, vol. 258(C).
- Asaee, S. Rasoul & Sharafian, Amir & Herrera, Omar E. & Blomerus, Paul & Mérida, Walter, 2018. "Housing stock in cold-climate countries: Conversion challenges for net zero emission buildings," Applied Energy, Elsevier, vol. 217(C), pages 88-100.
- Galatioto, A. & Ciulla, G. & Ricciu, R., 2017. "An overview of energy retrofit actions feasibility on Italian historical buildings," Energy, Elsevier, vol. 137(C), pages 991-1000.
- Thygesen, Richard & Karlsson, Björn, 2017. "An analysis on how proposed requirements for near zero energy buildings manages PV electricity in combination with two different types of heat pumps and its policy implications – A Swedish example," Energy Policy, Elsevier, vol. 101(C), pages 10-19.
- Zetterholm, Jonas & Pettersson, Karin & Leduc, Sylvain & Mesfun, Sennai & Lundgren, Joakim & Wetterlund, Elisabeth, 2018. "Resource efficiency or economy of scale: Biorefinery supply chain configurations for co-gasification of black liquor and pyrolysis liquids," Applied Energy, Elsevier, vol. 230(C), pages 912-924.
- Zetterholm, Jonas & Wetterlund, Elisabeth & Pettersson, Karin & Lundgren, Joakim, 2018. "Evaluation of value chain configurations for fast pyrolysis of lignocellulosic biomass - Integration, feedstock, and product choice," Energy, Elsevier, vol. 144(C), pages 564-575.
- Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
- Moa Swing Gustafsson & Jonn Are Myhren & Erik Dotzauer, 2018. "Life Cycle Cost of Heat Supply to Areas with Detached Houses—A Comparison of District Heating and Heat Pumps from an Energy System Perspective," Energies, MDPI, vol. 11(12), pages 1-17, November.
- Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2018. "Effects of energy efficiency measures in district-heated buildings on energy supply," Energy, Elsevier, vol. 142(C), pages 1114-1127.
- Moa Swing Gustafsson & Jonn Are Myhren & Erik Dotzauer & Marcus Gustafsson, 2019. "Life Cycle Cost of Building Energy Renovation Measures, Considering Future Energy Production Scenarios," Energies, MDPI, vol. 12(14), pages 1-15, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2018. "Effects of energy efficiency measures in district-heated buildings on energy supply," Energy, Elsevier, vol. 142(C), pages 1114-1127.
- Delmastro, C. & Martinsson, F. & Dulac, J. & Corgnati, S.P., 2017. "Sustainable urban heat strategies: Perspectives from integrated district energy choices and energy conservation in buildings. Case studies in Torino and Stockholm," Energy, Elsevier, vol. 138(C), pages 1209-1220.
- Delmastro, Chiara & Gargiulo, Maurizio, 2020. "Capturing the long-term interdependencies between building thermal energy supply and demand in urban planning strategies," Applied Energy, Elsevier, vol. 268(C).
- Gustafsson, Marcus & Gustafsson, Moa Swing & Myhren, Jonn Are & Bales, Chris & Holmberg, Sture, 2016. "Techno-economic analysis of energy renovation measures for a district heated multi-family house," Applied Energy, Elsevier, vol. 177(C), pages 108-116.
- Lidberg, T. & Gustafsson, M. & Myhren, J.A. & Olofsson, T. & Ödlund (former Trygg), L., 2018. "Environmental impact of energy refurbishment of buildings within different district heating systems," Applied Energy, Elsevier, vol. 227(C), pages 231-238.
- Nguyen, Truong & Gustavsson, Leif & Dodoo, Ambrose & Tettey, Uniben Yao Ayikoe, 2020. "Implications of supplying district heat to a new urban residential area in Sweden," Energy, Elsevier, vol. 194(C).
- Dodoo, Ambrose & Gustavsson, Leif & Le Truong, Nguyen, 2018. "Primary energy benefits of cost-effective energy renovation of a district heated multi-family building under different energy supply systems," Energy, Elsevier, vol. 143(C), pages 69-90.
- Welsch, Bastian & Göllner-Völker, Laura & Schulte, Daniel O. & Bär, Kristian & Sass, Ingo & Schebek, Liselotte, 2018. "Environmental and economic assessment of borehole thermal energy storage in district heating systems," Applied Energy, Elsevier, vol. 216(C), pages 73-90.
- Vlatko Milić & Shahnaz Amiri & Bahram Moshfegh, 2020. "A Systematic Approach to Predict the Economic and Environmental Effects of the Cost-Optimal Energy Renovation of a Historic Building District on the District Heating System," Energies, MDPI, vol. 13(1), pages 1-25, January.
- Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
- Stefan Blomqvist & Lina La Fleur & Shahnaz Amiri & Patrik Rohdin & Louise Ödlund (former Trygg), 2019. "The Impact on System Performance When Renovating a Multifamily Building Stock in a District Heated Region," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
- Olsson, Linda & Wetterlund, Elisabeth & Söderström, Mats, 2015. "Assessing the climate impact of district heating systems with combined heat and power production and industrial excess heat," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 31-39.
- Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Using ensemble weather predictions in district heating operation and load forecasting," Applied Energy, Elsevier, vol. 193(C), pages 455-465.
- Asaee, S. Rasoul & Sharafian, Amir & Herrera, Omar E. & Blomerus, Paul & Mérida, Walter, 2018. "Housing stock in cold-climate countries: Conversion challenges for net zero emission buildings," Applied Energy, Elsevier, vol. 217(C), pages 88-100.
- Lidberg, T. & Olofsson, T. & Trygg, L., 2016. "System impact of energy efficient building refurbishment within a district heated region," Energy, Elsevier, vol. 106(C), pages 45-53.
- Mattias Gustafsson & Richard Thygesen & Björn Karlsson & Louise Ödlund, 2017. "Rev-Changes in Primary Energy Use and CO 2 Emissions—An Impact Assessment for a Building with Focus on the Swedish Proposal for Nearly Zero Energy Buildings," Energies, MDPI, vol. 10(7), pages 1-14, July.
- Weinberger, Gottfried & Amiri, Shahnaz & Moshfegh, Bahram, 2017. "On the benefit of integration of a district heating system with industrial excess heat: An economic and environmental analysis," Applied Energy, Elsevier, vol. 191(C), pages 454-468.
- Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2015. "Renewable-based heat supply of multi-apartment buildings with varied heat demands," Energy, Elsevier, vol. 93(P1), pages 1053-1062.
- Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
- Sperling, Karl & Möller, Bernd, 2012. "End-use energy savings and district heating expansion in a local renewable energy system – A short-term perspective," Applied Energy, Elsevier, vol. 92(C), pages 831-842.
More about this item
Keywords
District heating system; Energy efficiency; Refurbishment; Simulation; Greenhouse gases;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:341-350. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.