IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip1p1053-1062.html
   My bibliography  Save this article

Renewable-based heat supply of multi-apartment buildings with varied heat demands

Author

Listed:
  • Truong, Nguyen Le
  • Dodoo, Ambrose
  • Gustavsson, Leif

Abstract

This study investigates the cost and primary energy use to heat an existing multi-apartment building in Sweden, before and after deep energy efficiency renovation, with different types of renewable-based systems. District heating systems of different scales as well as local heat production based on bioelectric boilers, ground-source bioelectric heat pumps and wood pellet boilers with or without solar heating are considered. The annual energy demand of the building, calculated hour by hour, with and without energy efficiency improvements, are matched against the renewable-based heat supply options by techno-economic modeling to minimize cost for each considered heat supply option. The results show that the availability of heating technologies at the building site and the scale of the building's heat demand influence the cost and the primary energy efficiency of the heating options. District heat from large-scale systems is cost efficient for the building without energy-efficiency improvement, whereas electric heat pumps and wood pellet boilers are more cost efficient when implementing energy-efficiency improvement. However, the cost difference is small between these alternatives and sensitive to the size of building. Large-scale district heating with cogeneration of power is most primary energy efficient while heat pumps and medium-scale district heating are nearly as efficient.

Suggested Citation

  • Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2015. "Renewable-based heat supply of multi-apartment buildings with varied heat demands," Energy, Elsevier, vol. 93(P1), pages 1053-1062.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:1053-1062
    DOI: 10.1016/j.energy.2015.09.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215012979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.09.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Münster, Marie & Morthorst, Poul Erik & Larsen, Helge V. & Bregnbæk, Lars & Werling, Jesper & Lindboe, Hans Henrik & Ravn, Hans, 2012. "The role of district heating in the future Danish energy system," Energy, Elsevier, vol. 48(1), pages 47-55.
    2. Dalla Rosa, A. & Christensen, J.E., 2011. "Low-energy district heating in energy-efficient building areas," Energy, Elsevier, vol. 36(12), pages 6890-6899.
    3. Joelsson, Anna & Gustavsson, Leif, 2009. "District heating and energy efficiency in detached houses of differing size and construction," Applied Energy, Elsevier, vol. 86(2), pages 126-134, February.
    4. Gustavsson, Leif & Haus, Sylvia & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le, 2015. "Climate effects of bioenergy from forest residues in comparison to fossil energy," Applied Energy, Elsevier, vol. 138(C), pages 36-50.
    5. Difs, Kristina & Bennstam, Marcus & Trygg, Louise & Nordenstam, Lena, 2010. "Energy conservation measures in buildings heated by district heating – A local energy system perspective," Energy, Elsevier, vol. 35(8), pages 3194-3203.
    6. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    7. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2014. "Effects of heat and electricity saving measures in district-heated multistory residential buildings," Applied Energy, Elsevier, vol. 118(C), pages 57-67.
    8. Truong, Nguyen Le & Gustavsson, Leif, 2014. "Cost and primary energy efficiency of small-scale district heating systems," Applied Energy, Elsevier, vol. 130(C), pages 419-427.
    9. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    10. Truong, Nguyen Le & Gustavsson, Leif, 2014. "Minimum-cost district heat production systems of different sizes under different environmental and social cost scenarios," Applied Energy, Elsevier, vol. 136(C), pages 881-893.
    11. Elshkaki, Ayman & Graedel, T.E., 2014. "Dysprosium, the balance problem, and wind power technology," Applied Energy, Elsevier, vol. 136(C), pages 548-559.
    12. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    13. Brand, Marek & Svendsen, Svend, 2013. "Renewable-based low-temperature district heating for existing buildings in various stages of refurbishment," Energy, Elsevier, vol. 62(C), pages 311-319.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    2. Sernhed, Kerstin & Lygnerud, Kristina & Werner, Sven, 2018. "Synthesis of recent Swedish district heating research," Energy, Elsevier, vol. 151(C), pages 126-132.
    3. Fuentes-Cortés, Luis Fabián & Dowling, Alexander W. & Rubio-Maya, Carlos & Zavala, Víctor M. & Ponce-Ortega, José María, 2016. "Integrated design and control of multigeneration systems for building complexes," Energy, Elsevier, vol. 116(P2), pages 1403-1416.
    4. Dodoo, Ambrose & Gustavsson, Leif & Tettey, Uniben Y.A., 2017. "Final energy savings and cost-effectiveness of deep energy renovation of a multi-storey residential building," Energy, Elsevier, vol. 135(C), pages 563-576.
    5. Weinand, Jann Michael & Kleinebrahm, Max & McKenna, Russell & Mainzer, Kai & Fichtner, Wolf, 2019. "Developing a combinatorial optimisation approach to design district heating networks based on deep geothermal energy," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Nguyen, Truong & Gustavsson, Leif & Dodoo, Ambrose & Tettey, Uniben Yao Ayikoe, 2020. "Implications of supplying district heat to a new urban residential area in Sweden," Energy, Elsevier, vol. 194(C).
    7. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    8. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2018. "Effects of energy efficiency measures in district-heated buildings on energy supply," Energy, Elsevier, vol. 142(C), pages 1114-1127.
    9. Dodoo, Ambrose & Gustavsson, Leif & Le Truong, Nguyen, 2018. "Primary energy benefits of cost-effective energy renovation of a district heated multi-family building under different energy supply systems," Energy, Elsevier, vol. 143(C), pages 69-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    2. Truong, Nguyen Le & Gustavsson, Leif, 2014. "Cost and primary energy efficiency of small-scale district heating systems," Applied Energy, Elsevier, vol. 130(C), pages 419-427.
    3. Nguyen, Truong & Gustavsson, Leif & Dodoo, Ambrose & Tettey, Uniben Yao Ayikoe, 2020. "Implications of supplying district heat to a new urban residential area in Sweden," Energy, Elsevier, vol. 194(C).
    4. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2018. "Effects of energy efficiency measures in district-heated buildings on energy supply," Energy, Elsevier, vol. 142(C), pages 1114-1127.
    5. Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
    6. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Gustafsson, Marcus & Gustafsson, Moa Swing & Myhren, Jonn Are & Bales, Chris & Holmberg, Sture, 2016. "Techno-economic analysis of energy renovation measures for a district heated multi-family house," Applied Energy, Elsevier, vol. 177(C), pages 108-116.
    8. Hanne Kauko & Daniel Rohde & Armin Hafner, 2020. "Local Heating Networks with Waste Heat Utilization: Low or Medium Temperature Supply?," Energies, MDPI, vol. 13(4), pages 1-16, February.
    9. Antoine Reguis & Behrang Vand & John Currie, 2021. "Challenges for the Transition to Low-Temperature Heat in the UK: A Review," Energies, MDPI, vol. 14(21), pages 1-26, November.
    10. Grundahl, Lars & Nielsen, Steffen & Lund, Henrik & Möller, Bernd, 2016. "Comparison of district heating expansion potential based on consumer-economy or socio-economy," Energy, Elsevier, vol. 115(P3), pages 1771-1778.
    11. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    12. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    13. Shamshirband, Shahaboddin & Petković, Dalibor & Enayatifar, Rasul & Hanan Abdullah, Abdul & Marković, Dušan & Lee, Malrey & Ahmad, Rodina, 2015. "Heat load prediction in district heating systems with adaptive neuro-fuzzy method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 760-767.
    14. Yuan, Jianjuan & Huang, Ke & Lu, Shilei & Zhang, Ji & Han, Zhao & Zhou, Zhihua, 2022. "Analysis of influencing factors on heat consumption of large residential buildings with different occupancy rates-Tianjin case study," Energy, Elsevier, vol. 238(PC).
    15. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.
    16. Brange, Lisa & Lauenburg, Patrick & Sernhed, Kerstin & Thern, Marcus, 2017. "Bottlenecks in district heating networks and how to eliminate them – A simulation and cost study," Energy, Elsevier, vol. 137(C), pages 607-616.
    17. Gustafsson, Mattias & Rönnelid, Mats & Trygg, Louise & Karlsson, Björn, 2016. "CO2 emission evaluation of energy conserving measures in buildings connected to a district heating system – Case study of a multi-dwelling building in Sweden," Energy, Elsevier, vol. 111(C), pages 341-350.
    18. Gustavsson, Leif & Truong, Nguyen Le, 2016. "Bioenergy pathways for cars: Effects on primary energy use, climate change and energy system integration," Energy, Elsevier, vol. 115(P3), pages 1779-1789.
    19. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    20. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2014. "Effects of heat and electricity saving measures in district-heated multistory residential buildings," Applied Energy, Elsevier, vol. 118(C), pages 57-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:1053-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.