IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp481-494.html
   My bibliography  Save this article

Pretreating biomass via demineralisation and torrefaction to improve the quality of crude pyrolysis oil

Author

Listed:
  • Wigley, Tansy
  • Yip, Alex C.K.
  • Pang, Shusheng

Abstract

Pretreating biomass prior to pyrolysis was investigated. Three undesirable catalysts naturally present in biomass were identified: inorganics, acids, and water. A pretreatment sequence incorporating acid leaching and torrefaction was developed to reduce/remove these catalysts. Acid leaching targeted reducing the biomass's inorganic content. The acidic liquor produced during torrefaction was rich in acetic and formic acid; this solution was recycled as the acid leaching reagent. The optimal leaching conditions were at 30 °C with 1% acetic acid for 4 h, which decreased the inorganic content from 0.41 wt% to 0.16 wt% for leached biomass. Torrefaction targeted reducing the biomass's moisture and acetyl content and was optimal at 270 °C for 20 min. Bio-oil from pyrolysis of demineralisation and torrefied biomass was depleted in organic acids, pyrolytic lignin, and water but was rich in levoglucosan and aromatics. Decreasing the biomass's acetyl and inorganic content reduced organic acid formation. The water content in the bio-oil was lower because less water entered the system, and water plays an auto-catalytic role during pyrolysis, promoting the production of pyrolytic water. The high levoglucosan yield confirmed that secondary reactions were limited to a much higher degree when both pretreatments were implemented compared to demineralisation or torrefaction alone.

Suggested Citation

  • Wigley, Tansy & Yip, Alex C.K. & Pang, Shusheng, 2016. "Pretreating biomass via demineralisation and torrefaction to improve the quality of crude pyrolysis oil," Energy, Elsevier, vol. 109(C), pages 481-494.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:481-494
    DOI: 10.1016/j.energy.2016.04.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216305096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Hsu, Huan-Chun & Lu, Ke-Miao & Lee, Wen-Jhy & Lin, Ta-Chang, 2011. "Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass," Energy, Elsevier, vol. 36(5), pages 3012-3021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David O. Usino & Taner Sar & Päivi Ylitervo & Tobias Richards, 2023. "Effect of Acid Pretreatment on the Primary Products of Biomass Fast Pyrolysis," Energies, MDPI, vol. 16(5), pages 1-25, March.
    2. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    3. Huan Li & Huawei Mou & Nan Zhao & Yaohong Yu & Quan Hong & Mperejekumana Philbert & Yuguang Zhou & Hossein Beidaghy Dizaji & Renjie Dong, 2021. "Nitrogen Migration during Pyrolysis of Raw and Acid Leached Maize Straw," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    4. Arteaga-Pérez, Luis E. & Gómez Cápiro, Oscar & Romero, Romina & Delgado, Aaron & Olivera, Patricia & Ronsse, Frederik & Jiménez, Romel, 2017. "In situ catalytic fast pyrolysis of crude and torrefied Eucalyptus globulus using carbon aerogel-supported catalysts," Energy, Elsevier, vol. 128(C), pages 701-712.
    5. Mohd Safaai, Nor Sharliza & Pang, Shusheng, 2021. "Pyrolysis kinetics of chemically treated and torrefied radiata pine identified through thermogravimetric analysis," Renewable Energy, Elsevier, vol. 175(C), pages 200-213.
    6. Javed, Muhammad Amir, 2020. "Acid treatment effecting the physiochemical structure and thermal degradation of biomass," Renewable Energy, Elsevier, vol. 159(C), pages 444-450.
    7. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    8. Cao, Bin & Wang, Shuang & Hu, Yamin & Abomohra, Abd El-Fatah & Qian, Lili & He, Zhixia & Wang, Qian & Uzoejinwa, Benjamin Bernard & Esakkimuthu, Sivakumar, 2019. "Effect of washing with diluted acids on Enteromorpha clathrata pyrolysis products: Towards enhanced bio-oil from seaweeds," Renewable Energy, Elsevier, vol. 138(C), pages 29-38.
    9. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    10. Javier Fermoso & Patricia Pizarro & Juan M. Coronado & David P. Serrano, 2017. "Advanced biofuels production by upgrading of pyrolysis bio‐oil," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    2. Rousset, P. & Fernandes, K. & Vale, A. & Macedo, L. & Benoist, A., 2013. "Change in particle size distribution of Torrefied biomass during cold fluidization," Energy, Elsevier, vol. 51(C), pages 71-77.
    3. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    4. Wu, Keng-Tung & Tsai, Chia-Ju & Chen, Chih-Shen & Chen, Hsiao-Wei, 2012. "The characteristics of torrefied microalgae," Applied Energy, Elsevier, vol. 100(C), pages 52-57.
    5. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis," Energy, Elsevier, vol. 36(11), pages 6451-6460.
    6. Christoforou, Elias A. & Fokaides, Paris A., 2016. "Life cycle assessment (LCA) of olive husk torrefaction," Renewable Energy, Elsevier, vol. 90(C), pages 257-266.
    7. Gunarathne, Duleeka Sandamali & Mueller, Andreas & Fleck, Sabine & Kolb, Thomas & Chmielewski, Jan Karol & Yang, Weihong & Blasiak, Wlodzimierz, 2014. "Gasification characteristics of steam exploded biomass in an updraft pilot scale gasifier," Energy, Elsevier, vol. 71(C), pages 496-506.
    8. Yang, Y. & Brammer, J.G. & Wright, D.G. & Scott, J.A. & Serrano, C. & Bridgwater, A.V., 2017. "Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact," Applied Energy, Elsevier, vol. 191(C), pages 639-652.
    9. Ke, Linyao & Wu, Qiuhao & Zhou, Nan & Xiong, Jianyun & Yang, Qi & Zhang, Letian & Wang, Yuanyuan & Dai, Leilei & Zou, Rongge & Liu, Yuhuan & Ruan, Roger & Wang, Yunpu, 2022. "Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    11. Nocquet, Timothée & Dupont, Capucine & Commandre, Jean-Michel & Grateau, Maguelone & Thiery, Sébastien & Salvador, Sylvain, 2014. "Volatile species release during torrefaction of wood and its macromolecular constituents: Part 1 – Experimental study," Energy, Elsevier, vol. 72(C), pages 180-187.
    12. Chen, Wei-Hsin & Liu, Shih-Hsien & Juang, Tarng-Tzuen & Tsai, Chi-Ming & Zhuang, Yi-Qing, 2015. "Characterization of solid and liquid products from bamboo torrefaction," Applied Energy, Elsevier, vol. 160(C), pages 829-835.
    13. Sun Yong Park & Kwang Cheol Oh & Seok Jun Kim & La Hoon Cho & Young Kwang Jeon & DaeHyun Kim, 2023. "Development of a Biomass Component Prediction Model Based on Elemental and Proximate Analyses," Energies, MDPI, vol. 16(14), pages 1-17, July.
    14. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. Rui Yang & Xuejiao Chen & Dongdong Zhang & Hong Wang & Wanlai Zhou & Wei Lin & Zhiyong Qi, 2022. "Steam-Exploded Pruning Waste as Peat Substitute: Physiochemical Properties, Phytotoxicity and Their Implications for Plant Cultivation," IJERPH, MDPI, vol. 19(9), pages 1-16, April.
    16. Jau-Jang Lu & Wei-Hsin Chen, 2013. "Product Yields and Characteristics of Corncob Waste under Various Torrefaction Atmospheres," Energies, MDPI, vol. 7(1), pages 1-15, December.
    17. Bach, Quang-Vu & Skreiberg, Øyvind & Lee, Chul-Jin, 2017. "Process modeling and optimization for torrefaction of forest residues," Energy, Elsevier, vol. 138(C), pages 348-354.
    18. Chen, Wei-Hsin & Lu, Ke-Miao & Tsai, Chi-Ming, 2012. "An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction," Applied Energy, Elsevier, vol. 100(C), pages 318-325.
    19. Sabil, Khalik M. & Aziz, Muafah A. & Lal, Bhajan & Uemura, Yoshimitsu, 2013. "Synthetic indicator on the severity of torrefaction of oil palm biomass residues through mass loss measurement," Applied Energy, Elsevier, vol. 111(C), pages 821-826.
    20. Chew, J.J. & Doshi, V., 2011. "Recent advances in biomass pretreatment – Torrefaction fundamentals and technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4212-4222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:481-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.