IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225005286.html
   My bibliography  Save this article

Techno-economic assessment of hemicellulose extraction of softwood sawdust coupled with pelletising

Author

Listed:
  • Melin, Kristian
  • Sermyagina, Ekaterina
  • Saari, Jussi
  • Lahti, Jussi
  • Vakkilainen, Esa
  • Mänttäri, Mika
  • Kallioinen-Mänttäri, Mari

Abstract

The forest industry strives to change its business model by adopting greater flexibility and additional revenue. One avenue is the development of novel biomaterials derived from various compounds in wood residues. One of the highly attractive choices is the production of hemicellulose, which is a widely abundant lignocellulosic polymer with a wide range of potential market applications. However, efficient utilisation of hemicelluloses on a commercial scale is lacking due to the technical limitations of isolation processes currently available. The present work investigates techno-economic aspects of hydrothermal extraction of hemicellulose from spruce via a novel method. Capital investments, operating costs and hemicellulose selling price are determined. Integration with extracted wood pelletising is additionally evaluated. A sensitivity analysis is performed evaluating which parameters have the highest influence on profitability. Hemicellulose extraction combined with pellet production from residue was found to be more techno-economically feasible than just pellet production when the hemicellulose sales price was > €1/kg for a plant scale using 62,000 bulk m3 tonne of sawdust per year. The production cost of hemicelluloses was between €0.6–1.9/kg depending on by-product, production scale, etc. Especially when integrated with an existing pulp mill, the production of hemicelluloses seems an attractive route for additional revenue.

Suggested Citation

  • Melin, Kristian & Sermyagina, Ekaterina & Saari, Jussi & Lahti, Jussi & Vakkilainen, Esa & Mänttäri, Mika & Kallioinen-Mänttäri, Mari, 2025. "Techno-economic assessment of hemicellulose extraction of softwood sawdust coupled with pelletising," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225005286
    DOI: 10.1016/j.energy.2025.134886
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225005286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. McKechnie, Jon & Saville, Brad & MacLean, Heather L., 2016. "Steam-treated wood pellets: Environmental and financial implications relative to fossil fuels and conventional pellets for electricity generation," Applied Energy, Elsevier, vol. 180(C), pages 637-649.
    2. Qiu, Yi & Cheng, Jun & Guo, Hao & Zhang, Ze & Yang, Weijuan & Cen, Kefa, 2019. "Mild hydrothermal treatment on microalgal biomass in batch reactors for lipids hydrolysis and solvent-free extraction to produce biodiesel," Energy, Elsevier, vol. 189(C).
    3. Kuo-Ting Wang & Chengyan Jing & Christopher Wood & Aditi Nagardeolekar & Neil Kohan & Prajakta Dongre & Thomas E. Amidon & Biljana M. Bujanovic, 2017. "Toward Complete Utilization of Miscanthus in a Hot-Water Extraction-Based Biorefinery," Energies, MDPI, vol. 11(1), pages 1-22, December.
    4. Jussi Saari & Ekaterina Sermyagina & Juha Kaikko & Markus Haider & Marcelo Hamaguchi & Esa Vakkilainen, 2021. "Evaluation of the Energy Efficiency Improvement Potential through Back-End Heat Recovery in the Kraft Recovery Boiler," Energies, MDPI, vol. 14(6), pages 1-21, March.
    5. Wigley, Tansy & Yip, Alex C.K. & Pang, Shusheng, 2016. "Pretreating biomass via demineralisation and torrefaction to improve the quality of crude pyrolysis oil," Energy, Elsevier, vol. 109(C), pages 481-494.
    6. Izydorczyk, Grzegorz & Skrzypczak, Dawid & Kocek, Daria & Mironiuk, Małgorzata & Witek-Krowiak, Anna & Moustakas, Konstantinos & Chojnacka, Katarzyna, 2020. "Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets," Energy, Elsevier, vol. 194(C).
    7. Prajakta Dongre & Mark Driscoll & Thomas Amidon & Biljana Bujanovic, 2015. "Lignin-Furfural Based Adhesives," Energies, MDPI, vol. 8(8), pages 1-18, July.
    8. Laschi, Andrea & Marchi, Enrico & González-García, Sara, 2016. "Environmental performance of wood pellets' production through life cycle analysis," Energy, Elsevier, vol. 103(C), pages 469-480.
    9. Yuan, Zhaoyang & Li, Guodong & Wei, Weiqi & Wang, Jiarun & Fang, Zhen, 2020. "A comparison of different pre-extraction methods followed by steam pretreatment of bamboo to improve the enzymatic digestibility and ethanol production," Energy, Elsevier, vol. 196(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martín-Gamboa, Mario & Marques, Pedro & Freire, Fausto & Arroja, Luís & Dias, Ana Cláudia, 2020. "Life cycle assessment of biomass pellets: A review of methodological choices and results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Saghar Sadaghiani & Fereshteh Mafakheri & Zhi Chen, 2023. "Life Cycle Assessment of Bioenergy Production Using Wood Pellets: A Case Study of Remote Communities in Canada," Energies, MDPI, vol. 16(15), pages 1-14, July.
    3. Javed, Muhammad Amir, 2020. "Acid treatment effecting the physiochemical structure and thermal degradation of biomass," Renewable Energy, Elsevier, vol. 159(C), pages 444-450.
    4. Jussi Saari & Petteri Peltola & Katja Kuparinen & Juha Kaikko & Ekaterina Sermyagina & Esa Vakkilainen, 2023. "Novel BECCS implementation integrating chemical looping combustion with oxygen uncoupling and a kraft pulp mill cogeneration plant," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(4), pages 1-26, April.
    5. Huan Li & Huawei Mou & Nan Zhao & Yaohong Yu & Quan Hong & Mperejekumana Philbert & Yuguang Zhou & Hossein Beidaghy Dizaji & Renjie Dong, 2021. "Nitrogen Migration during Pyrolysis of Raw and Acid Leached Maize Straw," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    6. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    7. Piyarath Saosee & Boonrod Sajjakulnukit & Shabbir H. Gheewala, 2020. "Life Cycle Assessment of Wood Pellet Production in Thailand," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    8. Kuo-Ting Wang & Chengyan Jing & Christopher Wood & Aditi Nagardeolekar & Neil Kohan & Prajakta Dongre & Thomas E. Amidon & Biljana M. Bujanovic, 2017. "Toward Complete Utilization of Miscanthus in a Hot-Water Extraction-Based Biorefinery," Energies, MDPI, vol. 11(1), pages 1-22, December.
    9. Jussi Saari & Ekaterina Sermyagina & Katja Kuparinen & Satu Lipiäinen & Juha Kaikko & Marcelo Hamaguchi & Clara Mendoza-Martinez, 2022. "Improving Kraft Pulp Mill Energy Efficiency through Low-Temperature Hydrothermal Carbonization of Biological Sludge," Energies, MDPI, vol. 15(17), pages 1-16, August.
    10. Jing, Qi & Wang, Dan & Shi, Congling, 2023. "Effects of aluminum powder additives on deflagration and detonation performance of JP-10/DEE mixed fuel under weak and strong ignition conditions," Applied Energy, Elsevier, vol. 331(C).
    11. Arteaga-Pérez, Luis E. & Gómez Cápiro, Oscar & Romero, Romina & Delgado, Aaron & Olivera, Patricia & Ronsse, Frederik & Jiménez, Romel, 2017. "In situ catalytic fast pyrolysis of crude and torrefied Eucalyptus globulus using carbon aerogel-supported catalysts," Energy, Elsevier, vol. 128(C), pages 701-712.
    12. Mohd Safaai, Nor Sharliza & Pang, Shusheng, 2021. "Pyrolysis kinetics of chemically treated and torrefied radiata pine identified through thermogravimetric analysis," Renewable Energy, Elsevier, vol. 175(C), pages 200-213.
    13. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    14. Julia Szulecka, 2019. "Towards Sustainable Wood-Based Energy: Evaluation and Strategies for Mainstreaming Sustainability in the Sector," Sustainability, MDPI, vol. 11(2), pages 1-21, January.
    15. Jiang, Xiaoxiao & Zhai, Rui & Li, Haixiang & Li, Chen & Deng, Qiufeng & Wu, Xuelan & Jin, Mingjie, 2023. "Binary additives for in-situ mitigating the inhibitory effect of lignin-derived phenolics on enzymatic hydrolysis of lignocellulose: Enhanced performance and synergistic mechanism," Energy, Elsevier, vol. 282(C).
    16. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    17. Leonel J. R. Nunes & Margarida Casau & Marta Ferreira Dias, 2021. "Portuguese Wood Pellets Market: Organization, Production and Consumption Analysis," Resources, MDPI, vol. 10(12), pages 1-24, December.
    18. Karner, K. & Dißauer, C. & Enigl, M. & Strasser, C. & Schmid, E., 2017. "Environmental trade-offs between residential oil-fired and wood pellet heating systems: Forecast scenarios for Austria until 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 868-879.
    19. Sanjeev Kumar Soni & Apurav Sharma & Raman Soni, 2023. "Microbial Enzyme Systems in the Production of Second Generation Bioethanol," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    20. Otavio Cavalett & Sigurd Norem Slettmo & Francesco Cherubini, 2018. "Energy and Environmental Aspects of Using Eucalyptus from Brazil for Energy and Transportation Services in Europe," Sustainability, MDPI, vol. 10(11), pages 1-18, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225005286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.