IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v104y2016icp42-52.html
   My bibliography  Save this article

Municipal solid waste gasification in semi-industrial conditions using air-CO2 mixtures

Author

Listed:
  • Couto, Nuno
  • Silva, Valter
  • Rouboa, Abel

Abstract

The gasification of MSW (municipal solid wastes) using CO2 as a gasifying agent has been object of growing interest in recent years. Although quite limited, studies have shown that CO2 can behave as a catalyst and accelerate the thermal cracking of volatiles as well as minimize tar formation, and even give a positive contribute to environment. Despite these promising features, it is still necessary to develop mathematical models able to assist the advance of this technology.

Suggested Citation

  • Couto, Nuno & Silva, Valter & Rouboa, Abel, 2016. "Municipal solid waste gasification in semi-industrial conditions using air-CO2 mixtures," Energy, Elsevier, vol. 104(C), pages 42-52.
  • Handle: RePEc:eee:energy:v:104:y:2016:i:c:p:42-52
    DOI: 10.1016/j.energy.2016.03.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216303322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Couto, Nuno Dinis & Silva, Valter Bruno & Monteiro, Eliseu & Rouboa, Abel, 2015. "Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices," Energy, Elsevier, vol. 93(P1), pages 864-873.
    2. Umeki, Kentaro & Yamamoto, Kouichi & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "High temperature steam-only gasification of woody biomass," Applied Energy, Elsevier, vol. 87(3), pages 791-798, March.
    3. Teixeira, Sandra & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2014. "Prospective application of municipal solid wastes for energy production in Portugal," Energy Policy, Elsevier, vol. 71(C), pages 159-168.
    4. Ahmed, I. & Gupta, A.K., 2009. "Characteristics of cardboard and paper gasification with CO2," Applied Energy, Elsevier, vol. 86(12), pages 2626-2634, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Watanabe, Hiroaki & Ahn, Seongyool & Tanno, Kenji, 2017. "Numerical investigation of effects of CO2 recirculation in an oxy-fuel IGCC on gasification characteristics of a two-stage entrained flow coal gasifier," Energy, Elsevier, vol. 118(C), pages 181-189.
    2. Policella, Matteo & Wang, Zhiwei & Burra, Kiran. G. & Gupta, Ashwani K., 2019. "Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires," Applied Energy, Elsevier, vol. 254(C).
    3. Cai, Wei & Liu, Conghu & Zhang, Cuixia & Ma, Minda & Rao, Weizhen & Li, Wenyi & He, Kang & Gao, Mengdi, 2018. "Developing the ecological compensation criterion of industrial solid waste based on emergy for sustainable development," Energy, Elsevier, vol. 157(C), pages 940-948.
    4. Cardoso, J. & Silva, V. & Eusébio, D. & Brito, P. & Hall, M.J. & Tarelho, L., 2018. "Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates," Energy, Elsevier, vol. 151(C), pages 520-535.
    5. Cardoso, João & Silva, Valter & Eusébio, Daniela & Brito, Paulo & Boloy, Ronney Mancebo & Tarelho, Luís & Silveira, José Luz, 2019. "Comparative 2D and 3D analysis on the hydrodynamics behaviour during biomass gasification in a pilot-scale fluidized bed reactor," Renewable Energy, Elsevier, vol. 131(C), pages 713-729.
    6. João Cardoso & Valter Silva & Daniela Eusébio & Paulo Brito, 2017. "Hydrodynamic Modelling of Municipal Solid Waste Residues in a Pilot Scale Fluidized Bed Reactor," Energies, MDPI, vol. 10(11), pages 1-20, November.
    7. Gao, Xiaoyan & Xu, Fei & Bao, Fubing & Tu, Chengxu & Zhang, Yaning & Wang, Yingying & Yang, Yang & Li, Bingxi, 2019. "Simulation and optimization of rice husk gasification using intrinsic reaction rate based CFD model," Renewable Energy, Elsevier, vol. 139(C), pages 611-620.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    2. Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
    3. Chen, Wei-Hsin & Lin, Bo-Jhih, 2013. "Hydrogen and synthesis gas production from activated carbon and steam via reusing carbon dioxide," Applied Energy, Elsevier, vol. 101(C), pages 551-559.
    4. Prabowo, Bayu & Umeki, Kentaro & Yan, Mi & Nakamura, Masato R. & Castaldi, Marco J. & Yoshikawa, Kunio, 2014. "CO2–steam mixture for direct and indirect gasification of rice straw in a downdraft gasifier: Laboratory-scale experiments and performance prediction," Applied Energy, Elsevier, vol. 113(C), pages 670-679.
    5. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    6. Ram, Narasimhan Kodanda & Singh, Nameirakpam Rajesh & Raman, Perumal & Kumar, Atul & Kaushal, Priyanka, 2020. "Experimental study on performance analysis of an internal combustion engine operated on hydrogen-enriched producer gas from the air–steam gasification," Energy, Elsevier, vol. 205(C).
    7. Yueshi Wu & Weihong Yang & Wlodzimierz Blasiak, 2014. "Energy and Exergy Analysis of High Temperature Agent Gasification of Biomass," Energies, MDPI, vol. 7(4), pages 1-16, April.
    8. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    9. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    10. Policella, Matteo & Wang, Zhiwei & Burra, Kiran. G. & Gupta, Ashwani K., 2019. "Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires," Applied Energy, Elsevier, vol. 254(C).
    11. Kwon, Dohee & Kim, Youngju & Choi, Dongho & Jung, Sungyup & Tsang, Yiu Fai & Kwon, Eilhann E., 2024. "Enhanced thermochemical valorization of coconut husk through carbon dioxide integration: A sustainable approach to agricultural residue utilization," Applied Energy, Elsevier, vol. 369(C).
    12. Król, Danuta & Poskrobko, Sławomir, 2016. "High-methane gasification of fuels from waste – Experimental identification," Energy, Elsevier, vol. 116(P1), pages 592-600.
    13. Ansari, Khursheed B. & Gaikar, Vilas G., 2019. "Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron," Renewable Energy, Elsevier, vol. 130(C), pages 305-318.
    14. Ahmed, I.I. & Gupta, A.K., 2013. "Experiments and stochastic simulations of lignite coal during pyrolysis and gasification," Applied Energy, Elsevier, vol. 102(C), pages 355-363.
    15. Nipattummakul, Nimit & Ahmed, Islam I. & Kerdsuwan, Somrat & Gupta, Ashwani K., 2012. "Steam gasification of oil palm trunk waste for clean syngas production," Applied Energy, Elsevier, vol. 92(C), pages 778-782.
    16. Li, Jinhu & Ye, Xinhao & Burra, Kiran G. & Lu, Wei & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2023. "Synergistic effects during co-pyrolysis and co-gasification of polypropylene and polystyrene," Applied Energy, Elsevier, vol. 336(C).
    17. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    18. Chutichai, Bhawasut & Patcharavorachot, Yaneeporn & Assabumrungrat, Suttichai & Arpornwichanop, Amornchai, 2015. "Parametric analysis of a circulating fluidized bed biomass gasifier for hydrogen production," Energy, Elsevier, vol. 82(C), pages 406-413.
    19. Baran, Burhan & Mamis, Mehmet Salih & Alagoz, Baris Baykant, 2016. "Utilization of energy from waste potential in Turkey as distributed secondary renewable energy source," Renewable Energy, Elsevier, vol. 90(C), pages 493-500.
    20. Wiinikka, Henrik & Wennebro, Jonas & Gullberg, Marcus & Pettersson, Esbjörn & Weiland, Fredrik, 2017. "Pure oxygen fixed-bed gasification of wood under high temperature (>1000°C) freeboard conditions," Applied Energy, Elsevier, vol. 191(C), pages 153-162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:104:y:2016:i:c:p:42-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.