IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v98y2016icp471-482.html
   My bibliography  Save this article

Transforming cities towards sustainable low-carbon energy systems using emergy synthesis for support in decision making

Author

Listed:
  • Lugaric, Luka
  • Krajcar, Slavko

Abstract

Recognized as implementation actors of operative measures for transition towards a low carbon economy, cities must establish a development roadmap integrating local resources with local energy development plans. A systematic approach does not exist yet and cities develop their plans individually, which is difficult for small and medium sized cities due to limited development capacities. Conventional city planning approaches do not integrate considerations on energy, economy and environment in transition plans in an easily comparable way, yet making decisions with regards to these parameters is vital to determine outcomes of planned developments on future sustainability of the city.

Suggested Citation

  • Lugaric, Luka & Krajcar, Slavko, 2016. "Transforming cities towards sustainable low-carbon energy systems using emergy synthesis for support in decision making," Energy Policy, Elsevier, vol. 98(C), pages 471-482.
  • Handle: RePEc:eee:enepol:v:98:y:2016:i:c:p:471-482
    DOI: 10.1016/j.enpol.2016.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516304943
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.09.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    2. Zoran Morvaj, 2012. "Smart Energy Cities - Transition Towards a Low Carbon Society," Chapters, in: Zoran Morvaj (ed.), Energy Efficiency - A Bridge to Low Carbon Economy, IntechOpen.
    3. Jiří Malý, 2016. "Impact of Polycentric Urban Systems on Intra-regional Disparities: A Micro-regional Approach," European Planning Studies, Taylor & Francis Journals, vol. 24(1), pages 116-138, January.
    4. Saifi, Basim & Drake, Lars, 2008. "A coevolutionary model for promoting agricultural sustainability," Ecological Economics, Elsevier, vol. 65(1), pages 24-34, March.
    5. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    6. Lei, Kampeng & Wang, Zhishi, 2008. "Emergy synthesis and simulation for Macao," Energy, Elsevier, vol. 33(4), pages 613-625.
    7. Bastianoni, Simone & Morandi, Fabiana & Flaminio, Tommaso & Pulselli, Riccardo M. & Tiezzi, Elisa B.P., 2011. "Emergy and emergy algebra explained by means of ingenuous set theory," Ecological Modelling, Elsevier, vol. 222(16), pages 2903-2907.
    8. Brown, Mark T. & Cohen, Matthew J. & Sweeney, Sharlynn, 2009. "Predicting national sustainability: The convergence of energetic, economic and environmental realities," Ecological Modelling, Elsevier, vol. 220(23), pages 3424-3438.
    9. Lazaroiu, George Cristian & Roscia, Mariacristina, 2012. "Definition methodology for the smart cities model," Energy, Elsevier, vol. 47(1), pages 326-332.
    10. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    11. Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Zhang, Lixiao, 2013. "Modelling a thermodynamic-based comparative framework for urban sustainability: Incorporating economic and ecological losses into emergy analysis," Ecological Modelling, Elsevier, vol. 252(C), pages 280-287.
    12. Brown, Mark T. & Ulgiati, Sergio, 2011. "Understanding the global economic crisis: A biophysical perspective," Ecological Modelling, Elsevier, vol. 223(1), pages 4-13.
    13. Gürzenich, D. & Wagner, H.-J., 2004. "Cumulative energy demand and cumulative emissions of photovoltaics production in Europe," Energy, Elsevier, vol. 29(12), pages 2297-2303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heinisch, Verena & Göransson, Lisa & Erlandsson, Rasmus & Hodel, Henrik & Johnsson, Filip & Odenberger, Mikael, 2021. "Smart electric vehicle charging strategies for sectoral coupling in a city energy system," Applied Energy, Elsevier, vol. 288(C).
    2. Yanan Wang & Wenkun Zhang & Jinhua Chu, 2024. "What Drives Citizen’s Participate Intention in Smart City? An Empirical Study Based on Stimulus-Organism-Response (SOR) Theory," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 10088-10110, September.
    3. Ruijun Liu & Hao Sun & Lu Zhang & Qianwei Zhuang & Lele Zhang & Xueyi Zhang & Ye Chen, 2018. "Low-Carbon Energy Planning: A Hybrid MCDM Method Combining DANP and VIKOR Approach," Energies, MDPI, vol. 11(12), pages 1-18, December.
    4. Tian, Xu & Sarkis, Joseph, 2020. "Expanding green supply chain performance measurement through emergy accounting and analysis," International Journal of Production Economics, Elsevier, vol. 225(C).
    5. Alexander Cremer & Markus Berger & Katrin Müller & Matthias Finkbeiner, 2021. "The First City Organizational LCA Case Study: Feasibility and Lessons Learned from Vienna," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    6. Xiwen Fu & Shuxin Wang, 2022. "How to Promote Low-Carbon Cities with Blockchain Technology? A Blockchain-Based Low-Carbon Development Model for Chinese Cities," Sustainability, MDPI, vol. 14(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amaral, Luís P. & Martins, Nélson & Gouveia, Joaquim B., 2016. "A review of emergy theory, its application and latest developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 882-888.
    2. Liu, Xinyu & Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Ulgiati, Sergio, 2016. "Comparing national environmental and economic performances through emergy sustainability indicators: Moving environmental ethics beyond anthropocentrism toward ecocentrism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1532-1542.
    3. Le Corre, O. & Truffet, L., 2012. "Exact computation of emergy based on a mathematical reinterpretation of the rules of emergy algebra," Ecological Modelling, Elsevier, vol. 230(C), pages 101-113.
    4. Marvuglia, Antonino & Benetto, Enrico & Rios, Gordon & Rugani, Benedetto, 2013. "SCALE: Software for CALculating Emergy based on life cycle inventories," Ecological Modelling, Elsevier, vol. 248(C), pages 80-91.
    5. Seghetta, Michele & Østergård, Hanne & Bastianoni, Simone, 2014. "Energy analysis of using macroalgae from eutrophic waters as a bioethanol feedstock," Ecological Modelling, Elsevier, vol. 288(C), pages 25-37.
    6. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    7. Zarbá, Lucía & Brown, Mark T., 2015. "Cycling emergy: computing emergy in trophic networks," Ecological Modelling, Elsevier, vol. 315(C), pages 37-45.
    8. Bastianoni, S. & Facchini, A. & Susani, L. & Tiezzi, E., 2007. "Emergy as a function of exergy," Energy, Elsevier, vol. 32(7), pages 1158-1162.
    9. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    10. Giannetti, B.F. & Almeida, C.M.V.B. & Bonilla, S.H., 2010. "Comparing emergy accounting with well-known sustainability metrics: The case of Southern Cone Common Market, Mercosur," Energy Policy, Elsevier, vol. 38(7), pages 3518-3526, July.
    11. Bastianoni, Simone & Morandi, Fabiana & Flaminio, Tommaso & Pulselli, Riccardo M. & Tiezzi, Elisa B.P., 2011. "Emergy and emergy algebra explained by means of ingenuous set theory," Ecological Modelling, Elsevier, vol. 222(16), pages 2903-2907.
    12. Le Corre, O. & Truffet, L., 2015. "Emergy paths computation from interconnected energy system diagram," Ecological Modelling, Elsevier, vol. 313(C), pages 181-200.
    13. Patterson, Murray, 2014. "Evaluation of matrix algebra methods for calculating transformities from ecological and economic network data," Ecological Modelling, Elsevier, vol. 271(C), pages 72-82.
    14. Jiang, M.M. & Chen, B., 2011. "Integrated urban ecosystem evaluation and modeling based on embodied cosmic exergy," Ecological Modelling, Elsevier, vol. 222(13), pages 2149-2165.
    15. Le Corre, O. & Truffet, L. & Lahlou, C., 2015. "Odum–Tennenbaum–Brown calculus vs emergy and co-emergy analysis," Ecological Modelling, Elsevier, vol. 302(C), pages 9-12.
    16. Patterson, Murray G., 2012. "Are all processes equally efficient from an emergy perspective?," Ecological Modelling, Elsevier, vol. 226(C), pages 77-91.
    17. Jaklič, Tina & Juvančič, Luka & Kavčič, Stane & Debeljak, Marko, 2014. "Complementarity of socio-economic and emergy evaluation of agricultural production systems: The case of Slovenian dairy sector," Ecological Economics, Elsevier, vol. 107(C), pages 469-481.
    18. Jamali-Zghal, N. & Lacarrière, B. & Le Corre, O., 2015. "Metallurgical recycling processes: Sustainability ratios and environmental performance assessment," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 66-75.
    19. Saladini, Fabrizio & Patrizi, Nicoletta & Pulselli, Federico M. & Marchettini, Nadia & Bastianoni, Simone, 2016. "Guidelines for emergy evaluation of first, second and third generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 221-227.
    20. Gengyuan Liu & Zhifeng Yang & Bin Chen & Yan Zhang & Meirong Su & Lixiao Zhang, 2013. "Emergy Evaluation of the Urban Solid Waste Handling in Liaoning Province, China," Energies, MDPI, vol. 6(10), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:98:y:2016:i:c:p:471-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.