IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v68y2014icp218-231.html
   My bibliography  Save this article

Development of a new energy efficiency rating system for existing residential buildings

Author

Listed:
  • Koo, Choongwan
  • Hong, Taehoon
  • Lee, Minhyun
  • Seon Park, Hyo

Abstract

Building energy efficiency rating systems have been established worldwide to systematically manage the energy consumption of existing buildings. This study aimed to develop a new energy efficiency rating system for existing residential buildings from two perspectives: (i) establishment of reasonable and fair criteria for the building energy efficiency rating system; and (ii) establishment of comparative incentive and penalty programs to encourage the voluntary participation of all residents in the energy saving campaign. Based on the analysis of the conventional energy efficiency rating system for existing residential buildings, this study was conducted in five steps: (i) data collection and analysis; (ii) correlation analysis between the household size and the CO2 emission density (i.e., CO2 emission per unit area); (iii) cluster formation based on results of the correlation analysis using a decision tree; (iv) establishment of a new energy efficiency rating system for existing buildings; and (v) establishment of incentive and penalty programs using advanced case-based reasoning. The proposed system can allow a policymaker to establish a reasonable and fair energy efficiency rating system for existing residential buildings and can encourage the voluntary participation of all residents in the energy saving campaign.

Suggested Citation

  • Koo, Choongwan & Hong, Taehoon & Lee, Minhyun & Seon Park, Hyo, 2014. "Development of a new energy efficiency rating system for existing residential buildings," Energy Policy, Elsevier, vol. 68(C), pages 218-231.
  • Handle: RePEc:eee:enepol:v:68:y:2014:i:c:p:218-231
    DOI: 10.1016/j.enpol.2013.12.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514000032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.12.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Taehoon & Koo, Choongwan & Kim, Hyunjoong & Seon Park, Hyo, 2014. "Decision support model for establishing the optimal energy retrofit strategy for existing multi-family housing complexes," Energy Policy, Elsevier, vol. 66(C), pages 157-169.
    2. Murphy, Lorraine & Meijer, Frits & Visscher, Henk, 2012. "A qualitative evaluation of policy instruments used to improve energy performance of existing private dwellings in the Netherlands," Energy Policy, Elsevier, vol. 45(C), pages 459-468.
    3. Pat McAllister & Franz Fuerst & Buki Ekeowa, 2011. "The Impact of Energy Performance Certificates on the Rental and Capital Values of Commercial Property," ERES eres2011_89, European Real Estate Society (ERES).
    4. Fuerst, Franz & McAllister, Patrick, 2011. "The impact of Energy Performance Certificates on the rental and capital values of commercial property assets," Energy Policy, Elsevier, vol. 39(10), pages 6608-6614, October.
    5. Weiss, Julika & Dunkelberg, Elisa & Vogelpohl, Thomas, 2012. "Improving policy instruments to better tap into homeowner refurbishment potential: Lessons learned from a case study in Germany," Energy Policy, Elsevier, vol. 44(C), pages 406-415.
    6. repec:arz:wpaper:eres2011-89 is not listed on IDEAS
    7. Hong, Taehoon & Koo, Choongwan & Lee, Sungug, 2014. "Benchmarks as a tool for free allocation through comparison with similar projects: Focused on multi-family housing complex," Applied Energy, Elsevier, vol. 114(C), pages 663-675.
    8. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    9. Koo, Choongwan & Park, Sungki & Hong, Taehoon & Park, Hyo Seon, 2014. "An estimation model for the heating and cooling demand of a residential building with a different envelope design using the finite element method," Applied Energy, Elsevier, vol. 115(C), pages 205-215.
    10. Fuerst, Franz & McAllister, Pat, 2011. "Eco-labeling in commercial office markets: Do LEED and Energy Star offices obtain multiple premiums?," Ecological Economics, Elsevier, vol. 70(6), pages 1220-1230, April.
    11. Hong, Taehoon & Koo, Choongwan & Jeong, Kwangbok, 2012. "A decision support model for reducing electric energy consumption in elementary school facilities," Applied Energy, Elsevier, vol. 95(C), pages 253-266.
    12. Amecke, Hermann, 2012. "The impact of energy performance certificates: A survey of German home owners," Energy Policy, Elsevier, vol. 46(C), pages 4-14.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan, 2017. "Development of a prediction model for the cost saving potentials in implementing the building energy efficiency rating certification," Applied Energy, Elsevier, vol. 189(C), pages 257-270.
    2. Koo, Choongwan & Hong, Taehoon, 2015. "Development of a dynamic operational rating system in energy performance certificates for existing buildings: Geostatistical approach and data-mining technique," Applied Energy, Elsevier, vol. 154(C), pages 254-270.
    3. Dall’O’, Giuliano & Sarto, Luca & Sanna, Nicola & Tonetti, Valeria & Ventura, Martina, 2015. "On the use of an energy certification database to create indicators for energy planning purposes: Application in northern Italy," Energy Policy, Elsevier, vol. 85(C), pages 207-217.
    4. Rocco Curto & Elena Fregonara, 2019. "Monitoring and Analysis of the Real Estate Market in a Social Perspective: Results from the Turin’s (Italy) Experience," Sustainability, MDPI, vol. 11(11), pages 1-22, June.
    5. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
    6. Koo, Choongwan & Kim, Hyunjoong & Hong, Taehoon, 2014. "Framework for the analysis of the low-carbon scenario 2020 to achieve the national carbon Emissions reduction target: Focused on educational facilities," Energy Policy, Elsevier, vol. 73(C), pages 356-367.
    7. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Koo, Choongwan & Jeong, Kwangbok, 2016. "An optimization model for selecting the optimal green systems by considering the thermal comfort and energy consumption," Applied Energy, Elsevier, vol. 169(C), pages 682-695.
    8. Parkinson, Aidan & De Jong, Robert & Cooke, Alison & Guthrie, Peter, 2013. "Energy performance certification as a signal of workplace quality," Energy Policy, Elsevier, vol. 62(C), pages 1493-1505.
    9. Seo, Dong-yeon & Koo, Choongwan & Hong, Taehoon, 2015. "A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design," Applied Energy, Elsevier, vol. 142(C), pages 66-79.
    10. Liu, Nan & Zhao, Yuan & Ge, Jiaqi, 2018. "Do renters skimp on energy efficiency during economic recessions? Evidence from Northeast Scotland," Energy, Elsevier, vol. 165(PA), pages 164-175.
    11. Hyland, Marie & Lyons, Ronan C. & Lyons, Seán, 2013. "The value of domestic building energy efficiency — evidence from Ireland," Energy Economics, Elsevier, vol. 40(C), pages 943-952.
    12. Franco, Sofia F. & Cutter, W. Bowman, 2022. "The determinants of non-residential real estate values with special reference to environmental local amenities," Ecological Economics, Elsevier, vol. 201(C).
    13. Fuerst, Franz & McAllister, Patrick & Nanda, Anupam & Wyatt, Peter, 2015. "Does energy efficiency matter to home-buyers? An investigation of EPC ratings and transaction prices in England," Energy Economics, Elsevier, vol. 48(C), pages 145-156.
    14. Niina Leskinen & Jussi Vimpari & Seppo Junnila, 2020. "A Review of the Impact of Green Building Certification on the Cash Flows and Values of Commercial Properties," Sustainability, MDPI, vol. 12(7), pages 1-22, March.
    15. Hong, Taehoon & Koo, Choongwan & Kim, Daeho & Lee, Minhyun & Kim, Jimin, 2015. "An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches," Applied Energy, Elsevier, vol. 150(C), pages 308-322.
    16. Marmolejo-Duarte, Carlos & Chen, Ai, 2022. "Uncovering the price effect of energy performance certificate ratings when controlling for residential quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    17. Koo, Choongwan & Hong, Taehoon & Kim, Jimin & Kim, Hyunjoong, 2015. "An integrated multi-objective optimization model for establishing the low-carbon scenario 2020 to achieve the national carbon emissions reduction target for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 410-425.
    18. Prashant Das & Jonathan A. Wiley, 2014. "Determinants of premia for energy-efficient design in the office market," Journal of Property Research, Taylor & Francis Journals, vol. 31(1), pages 64-86, March.
    19. Pasichnyi, Oleksii & Wallin, Jörgen & Levihn, Fabian & Shahrokni, Hossein & Kordas, Olga, 2019. "Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?," Energy Policy, Elsevier, vol. 127(C), pages 486-499.
    20. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:68:y:2014:i:c:p:218-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.