IDEAS home Printed from
   My bibliography  Save this article

Capturing spatial effects, technology interactions, and uncertainty in urban energy and carbon models: Retrofitting newcastle as a case-study


  • Keirstead, James
  • Calderon, Carlos


Local authorities often rely upon urban energy and carbon modelling tools to develop mitigation policies and strategies that will deliver reductions in greenhouse gas emissions. In this paper the UK example of Newcastle-upon-Tyne is used to critique current practice, noting that important features of urban energy systems are often omitted by bottom-up tools including interactions between technologies, spatial disaggregation of demand, and the ability to pursue over-arching policy goals like cost minimization. An alternative optimization-based approach is then described and applied to the Newcastle case, at the scale of both the whole city and the South Heaton district, and using Monte Carlo techniques to address policy uncertainty. The results show that this new method can help policy makers draw more robust policy conclusions, sensitive to spatial variations in energy demand and capturing the interactions between developments in the national energy system and local policy options. Further work should focus on improving our understanding of local building stocks and energy demands so as to better assess the potential of new technologies and policies.

Suggested Citation

  • Keirstead, James & Calderon, Carlos, 2012. "Capturing spatial effects, technology interactions, and uncertainty in urban energy and carbon models: Retrofitting newcastle as a case-study," Energy Policy, Elsevier, vol. 46(C), pages 253-267.
  • Handle: RePEc:eee:enepol:v:46:y:2012:i:c:p:253-267
    DOI: 10.1016/j.enpol.2012.03.058

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Thomas Bruckner & Robbie Morrison & Chris Handley & Murray Patterson, 2003. "High-Resolution Modeling of Energy-Services Supply Systems Using deeco: Overview and Application to Policy Development," Annals of Operations Research, Springer, vol. 121(1), pages 151-180, July.
    2. Shimoda, Yoshiyuki & Yamaguchi, Yukio & Okamura, Tomo & Taniguchi, Ayako & Yamaguchi, Yohei, 2010. "Prediction of greenhouse gas reduction potential in Japanese residential sector by residential energy end-use model," Applied Energy, Elsevier, vol. 87(6), pages 1944-1952, June.
    3. Girardin, Luc & Marechal, François & Dubuis, Matthias & Calame-Darbellay, Nicole & Favrat, Daniel, 2010. "EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas," Energy, Elsevier, vol. 35(2), pages 830-840.
    4. Dhakal, Shobhakar & Shrestha, Ram M., 2010. "Bridging the research gaps for carbon emissions and their management in cities," Energy Policy, Elsevier, vol. 38(9), pages 4753-4755, September.
    5. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    6. Kikegawa, Yukihiro & Genchi, Yutaka & Kondo, Hiroaki & Hanaki, Keisuke, 2006. "Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building's energy-consumption for air-conditioning," Applied Energy, Elsevier, vol. 83(6), pages 649-668, June.
    7. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    8. Keirstead, James & Schulz, Niels B., 2010. "London and beyond: Taking a closer look at urban energy policy," Energy Policy, Elsevier, vol. 38(9), pages 4870-4879, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    2. Morlet, Clémence & Keirstead, James, 2013. "A comparative analysis of urban energy governance in four European cities," Energy Policy, Elsevier, vol. 61(C), pages 852-863.
    3. Hargreaves, Anthony & Cheng, Vicky & Deshmukh, Sandip & Leach, Matthew & Steemers, Koen, 2017. "Forecasting how residential urban form affects the regional carbon savings and costs of retrofitting and decentralized energy supply," Applied Energy, Elsevier, vol. 186(P3), pages 549-561.
    4. repec:eee:appene:v:210:y:2018:i:c:p:1051-1072 is not listed on IDEAS
    5. Samsatli, Sheila & Samsatli, Nouri J. & Shah, Nilay, 2015. "BVCM: A comprehensive and flexible toolkit for whole system biomass value chain analysis and optimisation – Mathematical formulation," Applied Energy, Elsevier, vol. 147(C), pages 131-160.
    6. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.

    More about this item


    Urban energy systems; Optimization; Retrofit;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:46:y:2012:i:c:p:253-267. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.