IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i9p4834-4841.html
   My bibliography  Save this article

Life cycle analysis for bioethanol production from sugar beet crops in Greece

Author

Listed:
  • Foteinis, Spyros
  • Kouloumpis, Victor
  • Tsoutsos, Theocharis

Abstract

The main aim of this study is to evaluate whether the potential transformation of the existing sugar plants of Northern Greece to modern bioethanol plants, using the existing cultivations of sugar beet, would be an environmentally sustainable decision. Using Life Cycle Inventory and Impact Assessment, all processes for bioethanol production from sugar beets were analyzed, quantitative data were collected and the environmental loads of the final product (bioethanol) and of each process were estimated. The final results of the environmental impact assessment are encouraging since bioethanol production gives better results than sugar production for the use of the same quantity of sugar beets. If the old sugar plants were transformed into modern bioethanol plants, the total reduction of the environmental load would be, at least, 32.6% and a reduction of more than 2 tons of CO2e/sugar beet of ha cultivation could be reached. Moreover bioethanol production was compared to conventional fuel (gasoline), as well as to other types of biofuels (biodiesel from Greek cultivations).

Suggested Citation

  • Foteinis, Spyros & Kouloumpis, Victor & Tsoutsos, Theocharis, 2011. "Life cycle analysis for bioethanol production from sugar beet crops in Greece," Energy Policy, Elsevier, vol. 39(9), pages 4834-4841, September.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:4834-4841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511004927
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Börjesson, Pål, 2009. "Good or bad bioethanol from a greenhouse gas perspective - What determines this?," Applied Energy, Elsevier, vol. 86(5), pages 589-594, May.
    2. Panoutsou, Calliope, 2008. "Bioenergy in Greece: Policies, diffusion framework and stakeholder interactions," Energy Policy, Elsevier, vol. 36(10), pages 3674-3685, October.
    3. Kondili, E.M. & Kaldellis, J.K., 2007. "Biofuel implementation in East Europe: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2137-2151, December.
    4. Botha, Tyron & von Blottnitz, Harro, 2006. "A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis," Energy Policy, Elsevier, vol. 34(17), pages 2654-2661, November.
    5. Goldemberg, José & Coelho, Suani Teixeira & Guardabassi, Patricia, 2008. "The sustainability of ethanol production from sugarcane," Energy Policy, Elsevier, vol. 36(6), pages 2086-2097, June.
    6. Goldemberg, José & Guardabassi, Patricia, 2009. "Are biofuels a feasible option?," Energy Policy, Elsevier, vol. 37(1), pages 10-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Laporte, Aaron V. & Ripplinger, David G., 2019. "The effects of site selection, opportunity costs and transportation costs on bioethanol production," Renewable Energy, Elsevier, vol. 131(C), pages 73-82.
    2. Rajaeifar, Mohammad Ali & Sadeghzadeh Hemayati, Saeed & Tabatabaei, Meisam & Aghbashlo, Mortaza & Mahmoudi, Seyed Bagher, 2019. "A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 423-442.
    3. Anar, Mohammad J. & Lin, Zhulu & Hoogenboom, Gerrit & Shelia, Vakhtang & Batchelor, William D. & Teboh, Jasper M. & Ostlie, Michael & Schatz, Blaine G. & Khan, Mohamed, 2019. "Modeling growth, development and yield of Sugarbeet using DSSAT," Agricultural Systems, Elsevier, vol. 169(C), pages 58-70.
    4. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    5. Khatiwada, Dilip & Venkata, Bharadwaj K. & Silveira, Semida & Johnson, Francis X., 2016. "Energy and GHG balances of ethanol production from cane molasses in Indonesia," Applied Energy, Elsevier, vol. 164(C), pages 756-768.
    6. Michel Brondani & Jivago Schumacher Oliveira & Flávio Dias Mayer & Ronaldo Hoffmann, 2020. "Life cycle assessment of distillation columns manufacturing," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5925-5945, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, Omar Inacio Benedetti & Rathmann, Regis, 2009. "Identification and analysis of local and regional impacts from the introduction of biodiesel production in the state of Piauí," Energy Policy, Elsevier, vol. 37(10), pages 4011-4020, October.
    2. Papapostolou, Christiana & Kondili, Emilia & Kaldellis, John K., 2011. "Development and implementation of an optimisation model for biofuels supply chain," Energy, Elsevier, vol. 36(10), pages 6019-6026.
    3. Velásquez-Arredondo, H.I. & Ruiz-Colorado, A.A. & De Oliveira, S., 2010. "Ethanol production process from banana fruit and its lignocellulosic residues: Energy analysis," Energy, Elsevier, vol. 35(7), pages 3081-3087.
    4. Geraldes Castanheira, Érica & Grisoli, Renata & Freire, Fausto & Pecora, Vanessa & Coelho, Suani Teixeira, 2014. "Environmental sustainability of biodiesel in Brazil," Energy Policy, Elsevier, vol. 65(C), pages 680-691.
    5. Blumer, Yann B. & Stauffacher, Michael & Lang, Daniel J. & Hayashi, Kiyotada & Uchida, Susumu, 2013. "Non-technical success factors for bioenergy projects—Learning from a multiple case study in Japan," Energy Policy, Elsevier, vol. 60(C), pages 386-395.
    6. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    7. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    8. Deborah Bentivoglio & Adele Finco & Mirian Rumenos Piedade Bacchi, 2016. "Interdependencies between Biofuel, Fuel and Food Prices: The Case of the Brazilian Ethanol Market," Energies, MDPI, vol. 9(6), pages 1-16, June.
    9. Sekoai, Patrick T. & Chunilall, Viren & Msele, Kwanele & Buthelezi, Lindiswa & Johakimu, Jonas & Andrew, Jerome & Zungu, Manqoba & Moloantoa, Karabelo & Maningi, Nontuthuko & Habimana, Olivier & Swart, 2023. "Biowaste biorefineries in South Africa: Current status, opportunities, and research and development needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    11. Theocharis Tsoutsos & Dimitris Bethanis, 2011. "Optimization of the Dilute Acid Hydrolyzator for Cellulose-to-Bioethanol Saccharification," Energies, MDPI, vol. 4(10), pages 1-23, October.
    12. Katia A. Figueroa-Rodríguez & Francisco Hernández-Rosas & Benjamín Figueroa-Sandoval & Joel Velasco-Velasco & Noé Aguilar Rivera, 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    13. Behera, Shuvashish & Kar, Shaktimay & Mohanty, Rama Chandra & Ray, Ramesh Chandra, 2010. "Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar agar and Ca-alginate matrices," Applied Energy, Elsevier, vol. 87(1), pages 96-100, January.
    14. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2010. "Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate," Renewable Energy, Elsevier, vol. 35(1), pages 14-22.
    15. Souza, Simone Pereira & Nogueira, Luiz Augusto Horta & Martinez, Johan & Cortez, Luis Augusto Barbosa, 2018. "Sugarcane can afford a cleaner energy profile in Latin America & Caribbean," Renewable Energy, Elsevier, vol. 121(C), pages 164-172.
    16. Moraes, Marcia A.F.D. & Nassar, Andre M. & Moura, Paula & Leal, Rodrigo L.V. & Cortez, L.A.B., 2014. "Jet biofuels in Brazil: Sustainability challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 716-726.
    17. Takahiro Nakashima & Keiichiro Ueno & Eisuke Fujita & Shoko Ishikawa, 2020. "Evaluation of Polyethylene Mulching and Sugarcane Cultivar on Energy Inputs and Greenhouse Gas Emissions for Ethanol Production in a Temperate Climate," Energies, MDPI, vol. 13(17), pages 1-17, August.
    18. Marcos Adami & Bernardo Friedrich Theodor Rudorff & Ramon Morais Freitas & Daniel Alves Aguiar & Luciana Miura Sugawara & Marcio Pupin Mello, 2012. "Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil," Sustainability, MDPI, vol. 4(4), pages 1-12, April.
    19. Crago, Christine L. & Khanna, Madhu & Barton, Jason & Giuliani, Eduardo & Amaral, Weber, 2010. "Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol," Energy Policy, Elsevier, vol. 38(11), pages 7404-7415, November.
    20. Pradipta Halder & Javier Arevalo & Liisa Tahvanainen & Paavo Pelkonen, 2014. "Benefits and Challenges Associated with the Development of Forest-Based Bioenergy Projects in India: Results from an Expert Survey," Challenges, MDPI, vol. 5(1), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:4834-4841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.