IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i5p2586-2595.html
   My bibliography  Save this article

A method for allocating renewable energy source subsidies among final energy consumers

Author

Listed:
  • Batlle, Carlos

Abstract

In a new context of growing need for renewable energy sources (RES), tariff design has become a critical component of energy system regulation. A methodology for allocating the cost of RES subsidies that ensures an optimal balance between compliance with the main regulatory principles of tariff design and each state's specific policy is of cardinal importance in the current context. This paper presents and discusses a novel methodology to allocate the RES subsidy costs, which consists of distributing them among final energy consumers, in proportion to their consumption, regardless of the type of final energy consumed (liquid fuels, gas, electricity or coal). First, the different designs of RES subsidies are categorized and a review of a good number of the RES burden sharing mechanisms implemented in the EU is presented. Then, the proposed methodology is developed on the basis of the basic regulatory principles underlying the tariff design and the current regulatory context in force in the EU. Finally, to illustrate its actual impact in a real case example, the proposed methodology is applied to the Spanish system, in which the burden of extra costs incurred for RES amounts to a very large proportion of the overall energy system costs.

Suggested Citation

  • Batlle, Carlos, 2011. "A method for allocating renewable energy source subsidies among final energy consumers," Energy Policy, Elsevier, vol. 39(5), pages 2586-2595, May.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2586-2595
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(11)00107-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Rooijen, Sascha N.M. & van Wees, Mark T., 2006. "Green electricity policies in the Netherlands: an analysis of policy decisions," Energy Policy, Elsevier, vol. 34(1), pages 60-71, January.
    2. Barth, Rüdiger & Weber, Christoph & Swider, Derk J., 2008. "Distribution of costs induced by the integration of RES-E power," Energy Policy, Elsevier, vol. 36(8), pages 3097-3105, August.
    3. Menanteau, Philippe & Finon, Dominique & Lamy, Marie-Laure, 2003. "Prices versus quantities: choosing policies for promoting the development of renewable energy," Energy Policy, Elsevier, vol. 31(8), pages 799-812, June.
    4. Lauber, Volkmar, 2004. "REFIT and RPS: options for a harmonised Community framework," Energy Policy, Elsevier, vol. 32(12), pages 1405-1414, August.
    5. Alfred E. Kahn, 1988. "The Economics of Regulation: Principles and Institutions," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262610523, December.
    6. Philippe Menanteau & Dominique Finon & Marie-Laure Lamy, 2003. "Prices versus quantities :environmental policies for promoting the development of renewable energy," Post-Print halshs-00480457, HAL.
    7. Moreno, Blanca & López, Ana Jesús, 2008. "The effect of renewable energy on employment. The case of Asturias (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 732-751, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Butler, Lucy & Neuhoff, Karsten, 2008. "Comparison of feed-in tariff, quota and auction mechanisms to support wind power development," Renewable Energy, Elsevier, vol. 33(8), pages 1854-1867.
    2. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    3. Agnolucci, Paolo, 2008. "Factors influencing the likelihood of regulatory changes in renewable electricity policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 141-161, January.
    4. Dominique Finon, 2006. "The Social Efficiency Of Instruments For The Promotion Of Renewable Energies In The Liberalised Power Industry," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 77(3), pages 309-343, September.
    5. Magnani, Natalia & Vaona, Andrea, 2013. "Regional spillover effects of renewable energy generation in Italy," Energy Policy, Elsevier, vol. 56(C), pages 663-671.
    6. Lewis, Joanna I. & Wiser, Ryan H., 2007. "Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms," Energy Policy, Elsevier, vol. 35(3), pages 1844-1857, March.
    7. Anis Radzi, 2015. "A survey of expert attitudes on understanding and governing energy autonomy at the local level," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 397-405, September.
    8. del Rio, Pablo & Gual, Miguel A., 2007. "An integrated assessment of the feed-in tariff system in Spain," Energy Policy, Elsevier, vol. 35(2), pages 994-1012, February.
    9. Choi, Gobong & Huh, Sung-Yoon & Heo, Eunnyeong & Lee, Chul-Yong, 2018. "Prices versus quantities: Comparing economic efficiency of feed-in tariff and renewable portfolio standard in promoting renewable electricity generation," Energy Policy, Elsevier, vol. 113(C), pages 239-248.
    10. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
    11. Schallenberg-Rodriguez, Julieta, 2014. "Renewable electricity support system: Design of a variable premium system based on the Spanish experience," Renewable Energy, Elsevier, vol. 68(C), pages 801-813.
    12. Escoffier, Margaux & Hache, Emmanuel & Mignon, Valérie & Paris, Anthony, 2021. "Determinants of solar photovoltaic deployment in the electricity mix: Do oil prices really matter?," Energy Economics, Elsevier, vol. 97(C).
    13. Mac Domhnaill, Ciarán & Ryan, Lisa, 2020. "Towards renewable electricity in Europe: Revisiting the determinants of renewable electricity in the European Union," Renewable Energy, Elsevier, vol. 154(C), pages 955-965.
    14. Valérie Mignon & Margaux Escoffier & Emmanuel Hache & Anthony Paris, 2019. "Determinants of investments in solar photovoltaic: Do oil prices really matter?," EconomiX Working Papers 2019-28, University of Paris Nanterre, EconomiX.
    15. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    16. Lipp, Judith, 2007. "Lessons for effective renewable electricity policy from Denmark, Germany and the United Kingdom," Energy Policy, Elsevier, vol. 35(11), pages 5481-5495, November.
    17. Kyunam Kim & Eunnyeong Heo & Yeonbae Kim, 2017. "Dynamic Policy Impacts on a Technological-Change System of Renewable Energy: An Empirical Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 205-236, February.
    18. Kildegaard, Arne, 2008. "Green certificate markets, the risk of over-investment, and the role of long-term contracts," Energy Policy, Elsevier, vol. 36(9), pages 3413-3421, September.
    19. Paolo Bertoldi & Silvia Rezessy & Diana Ãœrge-Vorsatz, 2005. "Tradable Certificates for Energy Savings: Opportunities, Challenges, and Prospects for Integration with other Market Instruments in the Energy Sector," Energy & Environment, , vol. 16(6), pages 959-992, November.
    20. Kim, Kyunam & Kim, Yeonbae, 2015. "Role of policy in innovation and international trade of renewable energy technology: Empirical study of solar PV and wind power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 717-727.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2586-2595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.