IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v163y2022ics0301421522000362.html
   My bibliography  Save this article

Zero-carbon steel production: The opportunities and role for Australia

Author

Listed:
  • Venkataraman, Mahesh
  • Csereklyei, Zsuzsanna
  • Aisbett, Emma
  • Rahbari, Alireza
  • Jotzo, Frank
  • Lord, Michael
  • Pye, John

Abstract

The global steel industry is entering a period of change unprecedented in its long history, and Australia, with the globally largest exports of both iron ore and metallurgical coal, must consider its position carefully. Steel production is critical to the support of global economic development and employs sophisticated, mature and highly-optimised blast furnace technology, but is nevertheless responsible for 7–9% of global greenhouse gas emissions. Global net-zero pledges mean that the industry cannot proceed with only incremental improvements, and must anticipate major changes to its core processes, or else depend on negative emissions technologies that may cost even more to implement. Transition scenarios in this paper highlight the rate at which ‘green steel’ technologies would need to be deployed to meet sectoral net-zero targets. The paper shows the co-location of Australia’s major iron ore deposits with excellent renewable energy resources, highlighting a potential advantage for local large-scale development of this industry. Deploying the huge renewable energy infrastructure required would lead to potential challenges for global materials supply chains. For Australia to find a strong and ongoing role in this industry, there it will need to consider long-sighted environmental and industrial policies, including R&D funding, project financing and (low-)emissions certification.

Suggested Citation

  • Venkataraman, Mahesh & Csereklyei, Zsuzsanna & Aisbett, Emma & Rahbari, Alireza & Jotzo, Frank & Lord, Michael & Pye, John, 2022. "Zero-carbon steel production: The opportunities and role for Australia," Energy Policy, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:enepol:v:163:y:2022:i:c:s0301421522000362
    DOI: 10.1016/j.enpol.2022.112811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522000362
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.112811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dani Rodrik, 2014. "Green industrial policy," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 30(3), pages 469-491.
    2. Csereklyei, Zsuzsanna & Thurner, Paul W. & Langer, Johannes & Küchenhoff, Helmut, 2017. "Energy paths in the European Union: A model-based clustering approach," Energy Economics, Elsevier, vol. 65(C), pages 442-457.
    3. Jeff Tollefson, 2017. "The wooden skyscrapers that could help to cool the planet," Nature, Nature, vol. 545(7654), pages 280-282, May.
    4. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    5. Abdul Quader, M. & Ahmed, Shamsuddin & Dawal, S.Z. & Nukman, Y., 2016. "Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 537-549.
    6. World Bank Group, 2017. "The Growing Role of Minerals and Metals for a Low Carbon Future," World Bank Publications - Reports 28312, The World Bank Group.
    7. Tomer Fishman & T. E. Graedel, 2019. "Impact of the establishment of US offshore wind power on neodymium flows," Nature Sustainability, Nature, vol. 2(4), pages 332-338, April.
    8. Dolf Gielen & Deger Saygin & Emanuele Taibi & Jean‐Pierre Birat, 2020. "Renewables‐based decarbonization and relocation of iron and steel making: A case study," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1113-1125, October.
    9. Pete Smith & Steven J. Davis & Felix Creutzig & Sabine Fuss & Jan Minx & Benoit Gabrielle & Etsushi Kato & Robert B. Jackson & Annette Cowie & Elmar Kriegler & Detlef P. van Vuuren & Joeri Rogelj & Ph, 2016. "Biophysical and economic limits to negative CO2 emissions," Nature Climate Change, Nature, vol. 6(1), pages 42-50, January.
    10. Lütkenhorst, Wilfried & Vidican, Georgeta & Altenburg, Tilman & Pegels, Anna, 2014. "Green industrial policy: managing transformation under uncertainty," IDOS Discussion Papers 28/2014, German Institute of Development and Sustainability (IDOS).
    11. Lars J. Nilsson & Fredric Bauer & Max Åhman & Fredrik N. G. Andersson & Chris Bataille & Stephane de la Rue du Can & Karin Ericsson & Teis Hansen & Bengt Johansson & Stefan Lechtenböhmer & Mariësse va, 2021. "An industrial policy framework for transforming energy and emissions intensive industries towards zero emissions," Climate Policy, Taylor & Francis Journals, vol. 21(8), pages 1053-1065, September.
    12. Laura J. Sonter & Damian J. Barrett & Chris J. Moran & Britaldo S. Soares-Filho, 2015. "Carbon emissions due to deforestation for the production of charcoal used in Brazil’s steel industry," Nature Climate Change, Nature, vol. 5(4), pages 359-363, April.
    13. Crompton, Paul & Lesourd, Jean-Baptiste, 2008. "Economies of scale in global iron-making," Resources Policy, Elsevier, vol. 33(2), pages 74-82, June.
    14. Quader, M. Abdul & Ahmed, Shamsuddin & Ghazilla, Raja Ariffin Raja & Ahmed, Shameem & Dahari, Mahidzal, 2015. "A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 594-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
    3. Bishal Bharadwaj & Franzisca Weder & Peta Ashworth, 2023. "More support for hydrogen export than its domestic application in Australia," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    3. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Andersson, Fredrik N. G., 2021. "A Scenario Analysis of the Potential Effects of Decarbonization on the Profitability of the Energy-Intensive and Natural-Resource-Based Industries," Working Papers 2021:18, Lund University, Department of Economics.
    5. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    6. Zhang, Yijun & Li, Xiaoping & Song, Yi & Jiang, Feitao, 2021. "Can green industrial policy improve total factor productivity? Firm-level evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 51-62.
    7. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    8. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    10. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    11. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    12. Evelyn Dietsche, 2017. "New industrial policy and the extractive industries," WIDER Working Paper Series wp-2017-161, World Institute for Development Economic Research (UNU-WIDER).
    13. Evelyn Dietsche, 2017. "New industrial policy and the extractive industries," WIDER Working Paper Series 161, World Institute for Development Economic Research (UNU-WIDER).
    14. Yangsiyu Lu & Francois Cohen & Stephen M. Smith & Alexander Pfeiffer, 2022. "Plant conversions and abatement technologies cannot prevent stranding of power plant assets in 2 °C scenarios," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Guendalina Anzolin & Amir Lebdioui, 2021. "Three Dimensions of Green Industrial Policy in the Context of Climate Change and Sustainable Development," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 33(2), pages 371-405, April.
    16. Zhu, Zhaohui & Tan, Yafei, 2022. "Can green industrial policy promote green innovation in heavily polluting enterprises? Evidence from China," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 59-75.
    17. Jing Xu & Yongchun Yang & Zhuo Jia & Genying Chang & Yongjiao Zhang & Maoyuan Zhao & Wenrui Wang, 2023. "A Systematic Government-Driven Green Development Transformation Strategy with Chinese Characteristics: The Case Study of the Xining Metropolitan Area," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    18. Cheng, Zhilong & Tan, Zhoutuo & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2020. "Recent progress in sustainable and energy-efficient technologies for sinter production in the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Vidican Auktor, Georgeta & Regeni, Giulio, 2017. "The developmental state in the 21st century: calling for a new social contract," IDOS Discussion Papers 5/2017, German Institute of Development and Sustainability (IDOS).
    20. Julianne DeAngelo & Inês Azevedo & John Bistline & Leon Clarke & Gunnar Luderer & Edward Byers & Steven J. Davis, 2021. "Energy systems in scenarios at net-zero CO2 emissions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:163:y:2022:i:c:s0301421522000362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.