IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v68y2017icp109-115.html
   My bibliography  Save this article

Economic externalities in transmission network expansion planning

Author

Listed:
  • Alayo, Hans
  • Rider, Marcos J.
  • Contreras, Javier

Abstract

This paper discusses investing in transmission capacity and its link with investing in generation capacity. Since opportunity costs in transmission and generation capacity are dependent, externalities arise when investment decisions are decentralized. Externalities are market failures which appear when a decision of a particular agent changes another agent's welfare, but not vice versa. When generation and transmission investment decisions are made separately, generation investment introduces negative externalities to transmission planning. A centralized multistage stochastic model is formulated for finding the Pareto optimal solution of investments in transmission and generation capacity. Using the model, we show some examples of externalities in transmission planning for the IEEE 24-bus test system and the Peruvian system. Finally, we found that for the Peruvian system simultaneous optimal planning of generation and transmission capacity gave significant savings, around $585 million, which represents 10% of the total cost.

Suggested Citation

  • Alayo, Hans & Rider, Marcos J. & Contreras, Javier, 2017. "Economic externalities in transmission network expansion planning," Energy Economics, Elsevier, vol. 68(C), pages 109-115.
  • Handle: RePEc:eee:eneeco:v:68:y:2017:i:c:p:109-115
    DOI: 10.1016/j.eneco.2017.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317303213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F., 2012. "The economics of planning electricity transmission to accommodate renewables: Using two-stage optimisation to evaluate flexibility and the cost of disregarding uncertainty," Energy Economics, Elsevier, vol. 34(6), pages 2089-2101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anselm Eicke, Tarun Khanna, and Lion Hirth, 2020. "Locational Investment Signals: How to Steer the Siting of New Generation Capacity in Power Systems?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6), pages 281-304.
    2. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    3. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    4. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    5. Quiroga, Daniela & Sauma, Enzo & Pozo, David, 2019. "Power system expansion planning under global and local emission mitigation policies," Applied Energy, Elsevier, vol. 239(C), pages 1250-1264.
    6. Simshauser, P., 2021. "Renewable Energy Zones in Australia’s National Electricity Market," Cambridge Working Papers in Economics 2119, Faculty of Economics, University of Cambridge.
    7. Farrell, Niall & Devine, Mel T. & Soroudi, Alireza, 2018. "An auction framework to integrate dynamic transmission expansion planning and pay-as-bid wind connection auctions," Applied Energy, Elsevier, vol. 228(C), pages 2462-2477.
    8. Simshauser, Paul & Billimoria, Farhad & Rogers, Craig, 2022. "Optimising VRE capacity in Renewable Energy Zones," Energy Economics, Elsevier, vol. 113(C).
    9. Martin Kristiansen & Magnus Korpås & Hossein Farahmand, 2018. "Towards a fully integrated North Sea offshore grid: An engineering‐economic assessment of a power link island," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iegor Riepin & Thomas Mobius & Felix Musgens, 2020. "Modelling uncertainty in coupled electricity and gas systems -- is it worth the effort?," Papers 2008.07221, arXiv.org, revised Sep 2020.
    2. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    3. Gurkan, G. & Langestraat, R., 2013. "Modeling And Analysis Of Renewable Energy Obligations And Technology Bandings In the UK Electricity Market," Discussion Paper 2013-016, Tilburg University, Center for Economic Research.
    4. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    5. Riepin, Iegor & Möbius, Thomas & Müsgens, Felix, 2021. "Modelling uncertainty in coupled electricity and gas systems—Is it worth the effort?," Applied Energy, Elsevier, vol. 285(C).
    6. Kang, Jidong & Wu, Zhuochun & Ng, Tsan Sheng & Su, Bin, 2023. "A stochastic-robust optimization model for inter-regional power system planning," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1234-1248.
    7. Egerer, Jonas & Rosellón, Juan & Schill, Wolf-Peter, 2015. "Power System Transformation toward Renewables: An Evaluation of Regulatory Approaches for Network Expansion," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 36(4), pages 105-128.
    8. Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.
    9. Ovaere, Marten & Heylen, Evelyn & Proost, Stef & Deconinck, Geert & Van Hertem, Dirk, 2019. "How detailed value of lost load data impact power system reliability decisions," Energy Policy, Elsevier, vol. 132(C), pages 1064-1075.
    10. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    11. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    12. Langestraat, R., 2013. "Environmental policies in competitive electricity markets," Other publications TiSEM 8c1d6907-e2ab-40ea-abcc-7, Tilburg University, School of Economics and Management.
    13. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    14. Munoz, Francisco D. & van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F. & Watson, Jean-Paul, 2017. "Does risk aversion affect transmission and generation planning? A Western North America case study," Energy Economics, Elsevier, vol. 64(C), pages 213-225.
    15. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    16. McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.
    17. Benjamin Böcker & Robin Leisen & Christoph Weber, "undated". "Optimal capacity adjustments in electricity market models – an iterative approach based on operational margins and the relevant supply stack," EWL Working Papers 1806, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    18. Anwar, Muhammad Bashar & Stephen, Gord & Dalvi, Sourabh & Frew, Bethany & Ericson, Sean & Brown, Maxwell & O’Malley, Mark, 2022. "Modeling investment decisions from heterogeneous firms under imperfect information and risk in wholesale electricity markets," Applied Energy, Elsevier, vol. 306(PA).
    19. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    20. Francisco Munoz & Enzo Sauma & Benjamin Hobbs, 2013. "Approximations in power transmission planning: implications for the cost and performance of renewable portfolio standards," Journal of Regulatory Economics, Springer, vol. 43(3), pages 305-338, June.

    More about this item

    Keywords

    Transmission planning; Externalities; Investing in generation;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:68:y:2017:i:c:p:109-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.