IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v91y1996i3p553-564.html
   My bibliography  Save this article

A recursive exact algorithm for weighted two-dimensional cutting

Author

Listed:
  • Hifi, M.
  • Zissimopoulos, V.

Abstract

No abstract is available for this item.

Suggested Citation

  • Hifi, M. & Zissimopoulos, V., 1996. "A recursive exact algorithm for weighted two-dimensional cutting," European Journal of Operational Research, Elsevier, vol. 91(3), pages 553-564, June.
  • Handle: RePEc:eee:ejores:v:91:y:1996:i:3:p:553-564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0377-2217(95)00343-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicos Christofides & Charles Whitlock, 1977. "An Algorithm for Two-Dimensional Cutting Problems," Operations Research, INFORMS, vol. 25(1), pages 30-44, February.
    2. Dowsland, Kathryn A. & Dowsland, William B., 1992. "Packing problems," European Journal of Operational Research, Elsevier, vol. 56(1), pages 2-14, January.
    3. Oliveira, JoseFernando & Ferreira, JoseSoeiro, 1990. "An improved version of Wang's algorithm for two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 256-266, January.
    4. J. E. Beasley, 1985. "An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure," Operations Research, INFORMS, vol. 33(1), pages 49-64, February.
    5. Fayard, Didier & Zissimopoulos, Vassilis, 1995. "An approximation algorithm for solving unconstrained two-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 618-632, August.
    6. P. C. Gilmore & R. E. Gomory, 1965. "Multistage Cutting Stock Problems of Two and More Dimensions," Operations Research, INFORMS, vol. 13(1), pages 94-120, February.
    7. Morabito, R. N. & Arenales, M. N. & Arcaro, V. F., 1992. "An and--or-graph approach for two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 58(2), pages 263-271, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mhand Hifi, 2004. "Dynamic Programming and Hill-Climbing Techniques for Constrained Two-Dimensional Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 65-84, March.
    2. Mhand Hifi & Catherine Roucairol, 2001. "Approximate and Exact Algorithms for Constrained (Un) Weighted Two-dimensional Two-staged Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 5(4), pages 465-494, December.
    3. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
    4. Mhand Hifi & Slim Sadfi, 2002. "The Knapsack Sharing Problem: An Exact Algorithm," Journal of Combinatorial Optimization, Springer, vol. 6(1), pages 35-54, March.
    5. Wang, Yu & Tang, Jiafu & Fung, Richard Y.K., 2014. "A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk," International Journal of Production Economics, Elsevier, vol. 158(C), pages 28-36.
    6. Fei, H. & Chu, C. & Meskens, N. & Artiba, A., 2008. "Solving surgical cases assignment problem by a branch-and-price approach," International Journal of Production Economics, Elsevier, vol. 112(1), pages 96-108, March.
    7. M. Hifi & R. M’Hallah & T. Saadi, 2009. "Approximate and exact algorithms for the double-constrained two-dimensional guillotine cutting stock problem," Computational Optimization and Applications, Springer, vol. 42(2), pages 303-326, March.
    8. Wei, Lijun & Hu, Qian & Lim, Andrew & Liu, Qiang, 2018. "A best-fit branch-and-bound heuristic for the unconstrained two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 270(2), pages 448-474.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, X. & Chu, C.B. & Lewis, R. & Nie, Y.Y. & Thompson, J., 2010. "A worst case analysis of a dynamic programming-based heuristic algorithm for 2D unconstrained guillotine cutting," European Journal of Operational Research, Elsevier, vol. 202(2), pages 368-378, April.
    2. Arenales, Marcos & Morabito, Reinaldo, 1995. "An AND/OR-graph approach to the solution of two-dimensional non-guillotine cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 599-617, August.
    3. Hifi, Mhand, 1997. "The DH/KD algorithm: a hybrid approach for unconstrained two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 97(1), pages 41-52, February.
    4. Morabito, Reinaldo & Arenales, Marcos N., 1996. "Staged and constrained two-dimensional guillotine cutting problems: An AND/OR-graph approach," European Journal of Operational Research, Elsevier, vol. 94(3), pages 548-560, November.
    5. Yanasse, Horacio Hideki & Pinto Lamosa, Maria Jose, 2007. "An integrated cutting stock and sequencing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1353-1370, December.
    6. Cintra, G.F. & Miyazawa, F.K. & Wakabayashi, Y. & Xavier, E.C., 2008. "Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation," European Journal of Operational Research, Elsevier, vol. 191(1), pages 61-85, November.
    7. Hadjiconstantinou, Eleni & Christofides, Nicos, 1995. "An exact algorithm for general, orthogonal, two-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 83(1), pages 39-56, May.
    8. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    9. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).
    10. Mhand Hifi, 2004. "Dynamic Programming and Hill-Climbing Techniques for Constrained Two-Dimensional Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 65-84, March.
    11. Vera Neidlein & Andrèa C. G. Vianna & Marcos N. Arenales & Gerhard Wäscher, 2008. "The Two-Dimensional, Rectangular, Guillotineable-Layout Cutting Problem with a Single Defect," FEMM Working Papers 08035, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    12. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.
    13. Parada Daza, Victor & Gomes de Alvarenga, Arlindo & de Diego, Jose, 1995. "Exact solutions for constrained two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 633-644, August.
    14. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.
    15. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    16. Beasley, J. E., 2004. "A population heuristic for constrained two-dimensional non-guillotine cutting," European Journal of Operational Research, Elsevier, vol. 156(3), pages 601-627, August.
    17. Morabito, Reinaldo & Belluzzo, Luciano, 2007. "Optimising the cutting of wood fibre plates in the hardboard industry," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1405-1420, December.
    18. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    19. Lodi, Andrea & Martello, Silvano & Vigo, Daniele, 1999. "Approximation algorithms for the oriented two-dimensional bin packing problem," European Journal of Operational Research, Elsevier, vol. 112(1), pages 158-166, January.
    20. Martins, Gustavo H.A. & Dell, Robert F., 2008. "Solving the pallet loading problem," European Journal of Operational Research, Elsevier, vol. 184(2), pages 429-440, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:91:y:1996:i:3:p:553-564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.