IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v332y2024i1d10.1007_s10479-023-05542-9.html
   My bibliography  Save this article

A two-phase constructive algorithm for the single container mix-loading problem

Author

Listed:
  • Tian Tian

    (Dongbei University of Finance and Economics)

  • Wenbin Zhu

    (South China University of Technology)

  • Ying Zhu

    (State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment)

  • Qiang Liu

    (State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment)

  • Lijun Wei

    (State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment)

Abstract

Manufacturers usually store their products in palletized storage units (PSUs). PSUs are convenient for storage but sometimes not cost-effective for transportation because they may result in large empty spaces of waste in containers. To improve the utilization of its containers, a manufacturer is willing to remove products from PSUs (a process called depalletizing) and load the individual products, together with other PSUs, into a container. Once a PSU is depalletized, its products must be loaded into the container. No PSU can be depalletized if the total volume of complete PSUs loaded in the container is not maximized. We introduce this problem as the single container mix-loading problem (SCMLP). Then, we develop a two-phase constructive algorithm for the SCMLP that uses a stochastic beam-search-based method developed for loading items into a given set of spaces as the sub-routine. In the first phase, the stochastic beam-search-based method is called upon to load PSUs into the container. In the second phase, a proper set of PSUs is selected, and the stochastic beam-search-based method is used to load all products of the selected PSUs into the remaining spaces in the container. The performance of our algorithm is demonstrated by experiments conducted on a set of instances generated from the historical data of the manufacturer. Besides, we also used the well-known 1500 single container loading problem instances to test the performance of our stochastic beam-search-based method, and the results showed that our approach is highly competitive with state-of-the-art methods.

Suggested Citation

  • Tian Tian & Wenbin Zhu & Ying Zhu & Qiang Liu & Lijun Wei, 2024. "A two-phase constructive algorithm for the single container mix-loading problem," Annals of Operations Research, Springer, vol. 332(1), pages 253-275, January.
  • Handle: RePEc:spr:annopr:v:332:y:2024:i:1:d:10.1007_s10479-023-05542-9
    DOI: 10.1007/s10479-023-05542-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05542-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05542-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Wenbin & Lim, Andrew, 2012. "A new iterative-doubling Greedy–Lookahead algorithm for the single container loading problem," European Journal of Operational Research, Elsevier, vol. 222(3), pages 408-417.
    2. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    3. P. C. Gilmore & R. E. Gomory, 1966. "The Theory and Computation of Knapsack Functions," Operations Research, INFORMS, vol. 14(6), pages 1045-1074, December.
    4. Sándor P. Fekete & Jörg Schepers & Jan C. van der Veen, 2007. "An Exact Algorithm for Higher-Dimensional Orthogonal Packing," Operations Research, INFORMS, vol. 55(3), pages 569-587, June.
    5. Pisinger, David, 2002. "Heuristics for the container loading problem," European Journal of Operational Research, Elsevier, vol. 141(2), pages 382-392, September.
    6. Bischoff, Eberhard E. & Marriott, Michael D., 1990. "A comparative evaluation of heuristics for container loading," European Journal of Operational Research, Elsevier, vol. 44(2), pages 267-276, January.
    7. Eley, Michael, 2002. "Solving container loading problems by block arrangement," European Journal of Operational Research, Elsevier, vol. 141(2), pages 393-409, September.
    8. F. Parreño & R. Alvarez-Valdes & J. M. Tamarit & J. F. Oliveira, 2008. "A Maximal-Space Algorithm for the Container Loading Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 412-422, August.
    9. Bischoff, E. E. & Janetz, F. & Ratcliff, M. S. W., 1995. "Loading pallets with non-identical items," European Journal of Operational Research, Elsevier, vol. 84(3), pages 681-692, August.
    10. Terno, Johannes & Scheithauer, Guntram & Sommerwei[ss], Uta & Riehme, Jan, 2000. "An efficient approach for the multi-pallet loading problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 372-381, June.
    11. Silvano Martello & David Pisinger & Daniele Vigo, 2000. "The Three-Dimensional Bin Packing Problem," Operations Research, INFORMS, vol. 48(2), pages 256-267, April.
    12. Davies, A. Paul & Bischoff, Eberhard E., 1999. "Weight distribution considerations in container loading," European Journal of Operational Research, Elsevier, vol. 114(3), pages 509-527, May.
    13. Huang, Wenqi & He, Kun, 2009. "A caving degree approach for the single container loading problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 93-101, July.
    14. Sándor P. Fekete & Jörg Schepers, 2004. "A Combinatorial Characterization of Higher-Dimensional Orthogonal Packing," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 353-368, May.
    15. Tobias Fanslau & Andreas Bortfeldt, 2010. "A Tree Search Algorithm for Solving the Container Loading Problem," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 222-235, May.
    16. Wei, Lijun & Zhu, Wenbin & Lim, Andrew, 2015. "A goal-driven prototype column generation strategy for the multiple container loading cost minimization problem," European Journal of Operational Research, Elsevier, vol. 241(1), pages 39-49.
    17. Hifi, M. & Zissimopoulos, V., 1996. "A recursive exact algorithm for weighted two-dimensional cutting," European Journal of Operational Research, Elsevier, vol. 91(3), pages 553-564, June.
    18. Galrão Ramos, A. & Oliveira, José F. & Gonçalves, José F. & Lopes, Manuel P., 2016. "A container loading algorithm with static mechanical equilibrium stability constraints," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 565-581.
    19. Sándor P. Fekete & Jörg Schepers, 2004. "A General Framework for Bounds for Higher-Dimensional Orthogonal Packing Problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 60(2), pages 311-329, October.
    20. Lim, A. & Rodrigues, B. & Wang, Y., 2003. "A multi-faced buildup algorithm for three-dimensional packing problems," Omega, Elsevier, vol. 31(6), pages 471-481, December.
    21. Kurpel, Deidson Vitorio & Scarpin, Cassius Tadeu & Pécora Junior, José Eduardo & Schenekemberg, Cleder Marcos & Coelho, Leandro C., 2020. "The exact solutions of several types of container loading problems," European Journal of Operational Research, Elsevier, vol. 284(1), pages 87-107.
    22. Araya, Ignacio & Moyano, Mauricio & Sanchez, Cristobal, 2020. "A beam search algorithm for the biobjective container loading problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 417-431.
    23. Bischoff, E. E. & Ratcliff, M. S. W., 1995. "Issues in the development of approaches to container loading," Omega, Elsevier, vol. 23(4), pages 377-390, August.
    24. Wang, Ning & Lim, Andrew & Zhu, Wenbin, 2013. "A multi-round partial beam search approach for the single container loading problem with shipment priority," International Journal of Production Economics, Elsevier, vol. 145(2), pages 531-540.
    25. Bortfeldt, Andreas & Gehring, Hermann, 2001. "A hybrid genetic algorithm for the container loading problem," European Journal of Operational Research, Elsevier, vol. 131(1), pages 143-161, May.
    26. Sheng, Liu & Hongxia, Zhao & Xisong, Dong & Changjian, Cheng, 2016. "A heuristic algorithm for container loading of pallets with infill boxes," European Journal of Operational Research, Elsevier, vol. 252(3), pages 728-736.
    27. Lim, Andrew & Ma, Hong & Qiu, Chaoyang & Zhu, Wenbin, 2013. "The single container loading problem with axle weight constraints," International Journal of Production Economics, Elsevier, vol. 144(1), pages 358-369.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Araya, Ignacio & Moyano, Mauricio & Sanchez, Cristobal, 2020. "A beam search algorithm for the biobjective container loading problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 417-431.
    2. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    3. Sheng, Liu & Hongxia, Zhao & Xisong, Dong & Changjian, Cheng, 2016. "A heuristic algorithm for container loading of pallets with infill boxes," European Journal of Operational Research, Elsevier, vol. 252(3), pages 728-736.
    4. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    5. Wang, Ning & Lim, Andrew & Zhu, Wenbin, 2013. "A multi-round partial beam search approach for the single container loading problem with shipment priority," International Journal of Production Economics, Elsevier, vol. 145(2), pages 531-540.
    6. Tian, Tian & Zhu, Wenbin & Lim, Andrew & Wei, Lijun, 2016. "The multiple container loading problem with preference," European Journal of Operational Research, Elsevier, vol. 248(1), pages 84-94.
    7. Zhu, Wenbin & Lim, Andrew, 2012. "A new iterative-doubling Greedy–Lookahead algorithm for the single container loading problem," European Journal of Operational Research, Elsevier, vol. 222(3), pages 408-417.
    8. Gajda, Mikele & Trivella, Alessio & Mansini, Renata & Pisinger, David, 2022. "An optimization approach for a complex real-life container loading problem," Omega, Elsevier, vol. 107(C).
    9. Wei, Lijun & Zhu, Wenbin & Lim, Andrew, 2015. "A goal-driven prototype column generation strategy for the multiple container loading cost minimization problem," European Journal of Operational Research, Elsevier, vol. 241(1), pages 39-49.
    10. Lim, Andrew & Ma, Hong & Qiu, Chaoyang & Zhu, Wenbin, 2013. "The single container loading problem with axle weight constraints," International Journal of Production Economics, Elsevier, vol. 144(1), pages 358-369.
    11. Ana María Montes-Franco & Juan Camilo Martinez-Franco & Alejandra Tabares & David Álvarez-Martínez, 2025. "A Hybrid Approach for the Container Loading Problem for Enhancing the Dynamic Stability Representation," Mathematics, MDPI, vol. 13(5), pages 1-21, March.
    12. Galrão Ramos, A. & Oliveira, José F. & Gonçalves, José F. & Lopes, Manuel P., 2016. "A container loading algorithm with static mechanical equilibrium stability constraints," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 565-581.
    13. Ramos, António G. & Silva, Elsa & Oliveira, José F., 2018. "A new load balance methodology for container loading problem in road transportation," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1140-1152.
    14. I. Gimenez-Palacios & M. T. Alonso & R. Alvarez-Valdes & F. Parreño, 2021. "Logistic constraints in container loading problems: the impact of complete shipment conditions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 177-203, April.
    15. Zhu, Wenbin & Fu, Ying & Zhou, You, 2024. "3D dynamic heterogeneous robotic palletization problem," European Journal of Operational Research, Elsevier, vol. 316(2), pages 584-596.
    16. Bonet Filella, Guillem & Trivella, Alessio & Corman, Francesco, 2023. "Modeling soft unloading constraints in the multi-drop container loading problem," European Journal of Operational Research, Elsevier, vol. 308(1), pages 336-352.
    17. Tobias Fanslau & Andreas Bortfeldt, 2010. "A Tree Search Algorithm for Solving the Container Loading Problem," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 222-235, May.
    18. Zhu, Wenbin & Huang, Weili & Lim, Andrew, 2012. "A prototype column generation strategy for the multiple container loading problem," European Journal of Operational Research, Elsevier, vol. 223(1), pages 27-39.
    19. Bischoff, E.E., 2006. "Three-dimensional packing of items with limited load bearing strength," European Journal of Operational Research, Elsevier, vol. 168(3), pages 952-966, February.
    20. Alonso, M.T. & Alvarez-Valdes, R. & Iori, M. & Parreño, F. & Tamarit, J.M., 2017. "Mathematical models for multicontainer loading problems," Omega, Elsevier, vol. 66(PA), pages 106-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:332:y:2024:i:1:d:10.1007_s10479-023-05542-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.