IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i5p869-d1606052.html
   My bibliography  Save this article

A Hybrid Approach for the Container Loading Problem for Enhancing the Dynamic Stability Representation

Author

Listed:
  • Ana María Montes-Franco

    (Department of Industrial Engineering, University of Los Andes, Bogotá 111711, Colombia
    These authors contributed equally to this work.)

  • Juan Camilo Martinez-Franco

    (Department of Industrial Engineering, University of Los Andes, Bogotá 111711, Colombia
    These authors contributed equally to this work.)

  • Alejandra Tabares

    (Department of Industrial Engineering, University of Los Andes, Bogotá 111711, Colombia)

  • David Álvarez-Martínez

    (Department of Industrial Engineering, University of Los Andes, Bogotá 111711, Colombia)

Abstract

In the container loading problem (CLP), the construction of packing patterns is driven by the maximization of the volume occupied, and comprises several constraints such as loading feasibility, weight balance, cargo stability, operational safety, material handling, and the prevention of cargo damage during container shipping. Previous works introduced dynamic stability indicators using simulation or statistical approaches. However, this firstly exponentially increases the computational burden, and secondly misrepresents the essential kinetic mechanical aspects. This paper presents a hybrid scheme to solve the CLP by embedding a mechanical model into a reactive GRASP algorithm, leading to two main novelties; namely, the substitution of the physics simulation engine to find the dynamic stability of the packing patterns, and a modified structure of the metaheuristic, guaranteeing specified minimum stability while achieving efficient packing patterns. The mechanical model dynamically analyzes the forces and accelerations acting on the cargo to predict loss of support, overturning, or critical velocity deltas that would damage it. At the same time, the reactive GRASP algorithm considers the dynamic stability indicators in the improvement steps. The stability indicators are obtained from the mechanical model, allowing the user to know the percentage of damaged boxes in a packing pattern. The effectiveness of the proposed approach is tested using a set of classical benchmark instances, obtaining adequately accurate solutions within a short computational time. The resulting scheme integrates real-world problem conditions and achieves dynamic stability solutions at an acceptable computational cost; it is programmed in C++ instead of relying on proprietary simulation tools.

Suggested Citation

  • Ana María Montes-Franco & Juan Camilo Martinez-Franco & Alejandra Tabares & David Álvarez-Martínez, 2025. "A Hybrid Approach for the Container Loading Problem for Enhancing the Dynamic Stability Representation," Mathematics, MDPI, vol. 13(5), pages 1-21, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:869-:d:1606052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/5/869/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/5/869/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tobias Fanslau & Andreas Bortfeldt, 2010. "A Tree Search Algorithm for Solving the Container Loading Problem," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 222-235, May.
    2. Fuellerer, Guenther & Doerner, Karl F. & Hartl, Richard F. & Iori, Manuel, 2010. "Metaheuristics for vehicle routing problems with three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 201(3), pages 751-759, March.
    3. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    4. Toffolo, Túlio A.M. & Esprit, Eline & Wauters, Tony & Vanden Berghe, Greet, 2017. "A two-dimensional heuristic decomposition approach to a three-dimensional multiple container loading problem," European Journal of Operational Research, Elsevier, vol. 257(2), pages 526-538.
    5. Gehring, H. & Menschner, K. & Meyer, M., 1990. "A computer-based heuristic for packing pooled shipment containers," European Journal of Operational Research, Elsevier, vol. 44(2), pages 277-288, January.
    6. Galrão Ramos, A. & Oliveira, José F. & Gonçalves, José F. & Lopes, Manuel P., 2016. "A container loading algorithm with static mechanical equilibrium stability constraints," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 565-581.
    7. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    8. Célia Paquay & Sabine Limbourg & Michaël Schyns & José Fernando Oliveira, 2018. "MIP-based constructive heuristics for the three-dimensional Bin Packing Problem with transportation constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 56(4), pages 1581-1592, February.
    9. Kurpel, Deidson Vitorio & Scarpin, Cassius Tadeu & Pécora Junior, José Eduardo & Schenekemberg, Cleder Marcos & Coelho, Leandro C., 2020. "The exact solutions of several types of container loading problems," European Journal of Operational Research, Elsevier, vol. 284(1), pages 87-107.
    10. Eley, Michael, 2002. "Solving container loading problems by block arrangement," European Journal of Operational Research, Elsevier, vol. 141(2), pages 393-409, September.
    11. Bischoff, E. E. & Ratcliff, M. S. W., 1995. "Issues in the development of approaches to container loading," Omega, Elsevier, vol. 23(4), pages 377-390, August.
    12. Silva, Elsa & Ramos, António G. & Oliveira, José F., 2018. "Load balance recovery for multi-drop distribution problems: A mixed integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 62-75.
    13. Haessler, Robert W. & Brian Talbot, F., 1990. "Load planning for shipments of low density products," European Journal of Operational Research, Elsevier, vol. 44(2), pages 289-299, January.
    14. F. Parreño & R. Alvarez-Valdes & J. M. Tamarit & J. F. Oliveira, 2008. "A Maximal-Space Algorithm for the Container Loading Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 412-422, August.
    15. Maria Teresa Alonso & Ramon Alvarez-Valdes & Francisco Parreño & Jose Manuel Tamarit, 2016. "Algorithms for Pallet Building and Truck Loading in an Interdepot Transportation Problem," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-11, April.
    16. Batoul Mahvash & Anjali Awasthi & Satyaveer Chauhan, 2018. "A column generation-based heuristic for the three-dimensional bin packing problem with rotation," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(1), pages 78-90, January.
    17. Bortfeldt, Andreas & Gehring, Hermann, 2001. "A hybrid genetic algorithm for the container loading problem," European Journal of Operational Research, Elsevier, vol. 131(1), pages 143-161, May.
    18. Chen, C. S. & Lee, S. M. & Shen, Q. S., 1995. "An analytical model for the container loading problem," European Journal of Operational Research, Elsevier, vol. 80(1), pages 68-76, January.
    19. Silvano Martello & David Pisinger & Daniele Vigo, 2000. "The Three-Dimensional Bin Packing Problem," Operations Research, INFORMS, vol. 48(2), pages 256-267, April.
    20. Lim, Andrew & Ma, Hong & Qiu, Chaoyang & Zhu, Wenbin, 2013. "The single container loading problem with axle weight constraints," International Journal of Production Economics, Elsevier, vol. 144(1), pages 358-369.
    21. Ramos, António G. & Silva, Elsa & Oliveira, José F., 2018. "A new load balance methodology for container loading problem in road transportation," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1140-1152.
    22. I. Gimenez-Palacios & M. T. Alonso & R. Alvarez-Valdes & F. Parreño, 2021. "Logistic constraints in container loading problems: the impact of complete shipment conditions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 177-203, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    2. Ramos, António G. & Silva, Elsa & Oliveira, José F., 2018. "A new load balance methodology for container loading problem in road transportation," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1140-1152.
    3. Gajda, Mikele & Trivella, Alessio & Mansini, Renata & Pisinger, David, 2022. "An optimization approach for a complex real-life container loading problem," Omega, Elsevier, vol. 107(C).
    4. I. Gimenez-Palacios & M. T. Alonso & R. Alvarez-Valdes & F. Parreño, 2021. "Logistic constraints in container loading problems: the impact of complete shipment conditions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 177-203, April.
    5. Araya, Ignacio & Moyano, Mauricio & Sanchez, Cristobal, 2020. "A beam search algorithm for the biobjective container loading problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 417-431.
    6. Silva, Elsa & Ramos, António G. & Oliveira, José F., 2018. "Load balance recovery for multi-drop distribution problems: A mixed integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 62-75.
    7. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    8. Tian Tian & Wenbin Zhu & Ying Zhu & Qiang Liu & Lijun Wei, 2024. "A two-phase constructive algorithm for the single container mix-loading problem," Annals of Operations Research, Springer, vol. 332(1), pages 253-275, January.
    9. Kurpel, Deidson Vitorio & Scarpin, Cassius Tadeu & Pécora Junior, José Eduardo & Schenekemberg, Cleder Marcos & Coelho, Leandro C., 2020. "The exact solutions of several types of container loading problems," European Journal of Operational Research, Elsevier, vol. 284(1), pages 87-107.
    10. Bonet Filella, Guillem & Trivella, Alessio & Corman, Francesco, 2023. "Modeling soft unloading constraints in the multi-drop container loading problem," European Journal of Operational Research, Elsevier, vol. 308(1), pages 336-352.
    11. Sheng, Liu & Hongxia, Zhao & Xisong, Dong & Changjian, Cheng, 2016. "A heuristic algorithm for container loading of pallets with infill boxes," European Journal of Operational Research, Elsevier, vol. 252(3), pages 728-736.
    12. Galrão Ramos, A. & Oliveira, José F. & Gonçalves, José F. & Lopes, Manuel P., 2016. "A container loading algorithm with static mechanical equilibrium stability constraints," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 565-581.
    13. Alonso, M.T. & Alvarez-Valdes, R. & Iori, M. & Parreño, F. & Tamarit, J.M., 2017. "Mathematical models for multicontainer loading problems," Omega, Elsevier, vol. 66(PA), pages 106-117.
    14. Tian, Tian & Zhu, Wenbin & Lim, Andrew & Wei, Lijun, 2016. "The multiple container loading problem with preference," European Journal of Operational Research, Elsevier, vol. 248(1), pages 84-94.
    15. M. T. Alonso & R. Alvarez-Valdes & F. Parreño, 2020. "A GRASP algorithm for multi container loading problems with practical constraints," 4OR, Springer, vol. 18(1), pages 49-72, March.
    16. Toffolo, Túlio A.M. & Esprit, Eline & Wauters, Tony & Vanden Berghe, Greet, 2017. "A two-dimensional heuristic decomposition approach to a three-dimensional multiple container loading problem," European Journal of Operational Research, Elsevier, vol. 257(2), pages 526-538.
    17. Wei, Lijun & Zhu, Wenbin & Lim, Andrew, 2015. "A goal-driven prototype column generation strategy for the multiple container loading cost minimization problem," European Journal of Operational Research, Elsevier, vol. 241(1), pages 39-49.
    18. Lim, Andrew & Ma, Hong & Qiu, Chaoyang & Zhu, Wenbin, 2013. "The single container loading problem with axle weight constraints," International Journal of Production Economics, Elsevier, vol. 144(1), pages 358-369.
    19. Castellucci, Pedro B. & Toledo, Franklina M.B. & Costa, Alysson M., 2019. "Output maximization container loading problem with time availability constraints," Operations Research Perspectives, Elsevier, vol. 6(C).
    20. Alonso, M.T. & Martinez-Sykora, A. & Alvarez-Valdes, R. & Parreño, F., 2022. "The pallet-loading vehicle routing problem with stability constraints," European Journal of Operational Research, Elsevier, vol. 302(3), pages 860-873.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:869-:d:1606052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.