IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v202y2010i2p368-378.html
   My bibliography  Save this article

A worst case analysis of a dynamic programming-based heuristic algorithm for 2D unconstrained guillotine cutting

Author

Listed:
  • Song, X.
  • Chu, C.B.
  • Lewis, R.
  • Nie, Y.Y.
  • Thompson, J.

Abstract

In this paper, a dynamic programming-based recursive method is proposed for solving an unconstrained 2D rectangular cutting problem. The algorithm is an incomplete method, in which some intricate cutting patterns may not be obtained. The worst case performance of the algorithm is evaluated and some theoretical analyses for the algorithm are performed. Compared to traditional dynamic programming, this algorithm gives a high percentage of optimal solutions (94.84%, 86.67% and 77.83% for small, medium and large sized unweighted instances, 99.67%, 99.50% and 97.00% for small, medium and large sized weighted instances) but features a far lower computational complexity. Computational results are also presented for some known benchmarks.

Suggested Citation

  • Song, X. & Chu, C.B. & Lewis, R. & Nie, Y.Y. & Thompson, J., 2010. "A worst case analysis of a dynamic programming-based heuristic algorithm for 2D unconstrained guillotine cutting," European Journal of Operational Research, Elsevier, vol. 202(2), pages 368-378, April.
  • Handle: RePEc:eee:ejores:v:202:y:2010:i:2:p:368-378
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00394-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicos Christofides & Charles Whitlock, 1977. "An Algorithm for Two-Dimensional Cutting Problems," Operations Research, INFORMS, vol. 25(1), pages 30-44, February.
    2. P. C. Gilmore & R. E. Gomory, 1966. "The Theory and Computation of Knapsack Functions," Operations Research, INFORMS, vol. 14(6), pages 1045-1074, December.
    3. Scheithauer, Gubtram & Sommerwei[ss], Uta, 1998. "4-Block heuristic for the rectangle packing problem," European Journal of Operational Research, Elsevier, vol. 108(3), pages 509-526, August.
    4. Dowsland, Kathryn A. & Dowsland, William B., 1992. "Packing problems," European Journal of Operational Research, Elsevier, vol. 56(1), pages 2-14, January.
    5. P. Y. Wang, 1983. "Two Algorithms for Constrained Two-Dimensional Cutting Stock Problems," Operations Research, INFORMS, vol. 31(3), pages 573-586, June.
    6. Mhand Hifi & Rym M'Hallah, 2005. "An Exact Algorithm for Constrained Two-Dimensional Two-Staged Cutting Problems," Operations Research, INFORMS, vol. 53(1), pages 140-150, February.
    7. Dyckhoff, Harald, 1990. "A typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 145-159, January.
    8. Haessler, Robert W. & Sweeney, Paul E., 1991. "Cutting stock problems and solution procedures," European Journal of Operational Research, Elsevier, vol. 54(2), pages 141-150, September.
    9. Hifi, Mhand, 1997. "The DH/KD algorithm: a hybrid approach for unconstrained two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 97(1), pages 41-52, February.
    10. Baldacci, Roberto & Boschetti, Marco A., 2007. "A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1136-1149, December.
    11. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    12. Alvarez-Valdes, R. & Parreno, F. & Tamarit, J.M., 2007. "A tabu search algorithm for a two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1167-1182, December.
    13. Belov, G. & Scheithauer, G., 2006. "A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage cutting," European Journal of Operational Research, Elsevier, vol. 171(1), pages 85-106, May.
    14. J. E. Beasley, 1985. "An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure," Operations Research, INFORMS, vol. 33(1), pages 49-64, February.
    15. Christofides, Nicos & Hadjiconstantinou, Eleni, 1995. "An exact algorithm for orthogonal 2-D cutting problems using guillotine cuts," European Journal of Operational Research, Elsevier, vol. 83(1), pages 21-38, May.
    16. Cintra, G.F. & Miyazawa, F.K. & Wakabayashi, Y. & Xavier, E.C., 2008. "Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation," European Journal of Operational Research, Elsevier, vol. 191(1), pages 61-85, November.
    17. Fayard, Didier & Zissimopoulos, Vassilis, 1995. "An approximation algorithm for solving unconstrained two-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 618-632, August.
    18. Hifi, Mhand & M'Hallah, Rym, 2006. "Strip generation algorithms for constrained two-dimensional two-staged cutting problems," European Journal of Operational Research, Elsevier, vol. 172(2), pages 515-527, July.
    19. Morabito, Reinaldo & Arenales, Marcos N., 1996. "Staged and constrained two-dimensional guillotine cutting problems: An AND/OR-graph approach," European Journal of Operational Research, Elsevier, vol. 94(3), pages 548-560, November.
    20. Morabito, R. N. & Arenales, M. N. & Arcaro, V. F., 1992. "An and--or-graph approach for two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 58(2), pages 263-271, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    2. Yanasse, Horacio Hideki & Pinto Lamosa, Maria Jose, 2007. "An integrated cutting stock and sequencing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1353-1370, December.
    3. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).
    4. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    5. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    6. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
    7. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.
    8. Mhand Hifi & Catherine Roucairol, 2001. "Approximate and Exact Algorithms for Constrained (Un) Weighted Two-dimensional Two-staged Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 5(4), pages 465-494, December.
    9. Mhand Hifi, 2004. "Dynamic Programming and Hill-Climbing Techniques for Constrained Two-Dimensional Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 65-84, March.
    10. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    11. Beasley, J. E., 2004. "A population heuristic for constrained two-dimensional non-guillotine cutting," European Journal of Operational Research, Elsevier, vol. 156(3), pages 601-627, August.
    12. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    13. Cui, Yaodong & Yang, Liu & Zhao, Zhigang & Tang, Tianbing & Yin, Mengxiao, 2013. "Sequential grouping heuristic for the two-dimensional cutting stock problem with pattern reduction," International Journal of Production Economics, Elsevier, vol. 144(2), pages 432-439.
    14. Vera Neidlein & Andrèa C. G. Vianna & Marcos N. Arenales & Gerhard Wäscher, 2008. "The Two-Dimensional, Rectangular, Guillotineable-Layout Cutting Problem with a Single Defect," FEMM Working Papers 08035, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    15. Wei, Lijun & Hu, Qian & Lim, Andrew & Liu, Qiang, 2018. "A best-fit branch-and-bound heuristic for the unconstrained two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 270(2), pages 448-474.
    16. Baldacci, Roberto & Boschetti, Marco A., 2007. "A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1136-1149, December.
    17. M. Hifi & R. M’Hallah & T. Saadi, 2009. "Approximate and exact algorithms for the double-constrained two-dimensional guillotine cutting stock problem," Computational Optimization and Applications, Springer, vol. 42(2), pages 303-326, March.
    18. Parada Daza, Victor & Gomes de Alvarenga, Arlindo & de Diego, Jose, 1995. "Exact solutions for constrained two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 633-644, August.
    19. Hifi, Mhand & M'Hallah, Rym, 2006. "Strip generation algorithms for constrained two-dimensional two-staged cutting problems," European Journal of Operational Research, Elsevier, vol. 172(2), pages 515-527, July.
    20. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:202:y:2010:i:2:p:368-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.