IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v324y2025i2p567-579.html
   My bibliography  Save this article

k-Tree: Crossing sharp boundaries in regression trees to find neighbors

Author

Listed:
  • Tian, Xuecheng
  • Wang, Shuaian
  • Zhen, Lu
  • Shen, Zuo-Jun (Max)

Abstract

Traditional classification and regression trees (CARTs) utilize a top-down, greedy approach to split the feature space into sharply defined, axis-aligned sub-regions (leaves). Each leaf treats all of the samples therein uniformly during the prediction process, leading to a constant predictor. Although this approach is well known for its interpretability and efficiency, it overlooks the complex local distributions within and across leaves. As the number of features increases, this limitation becomes more pronounced, often resulting in a concentration of samples near the boundaries of the leaves. Such clustering suggests that there is potential in identifying closer neighbors in adjacent leaves, a phenomenon that is unexplored in the literature. Our study addresses this gap by introducing the k-Tree methodology, a novel method that extends the search for nearest neighbors beyond a single leaf to include adjacent leaves. This approach has two key innovations: (1) establishing an adjacency relationship between leaves across the tree space and (2) designing novel intra-leaf and inter-leaf distance metrics through an optimization lens, which are tailored to local data distributions within the tree. We explore three implementations of the k-Tree methodology: (1) the Post-hoc k-Tree (Pk-Tree), which integrates the k-Tree methodology into constructed decision trees, (2) the Advanced k-Tree, which seamlessly incorporates the k-Tree methodology during the tree construction process, and (3) the Pk-random forest, which integrates the Pk-Tree principles with the random forest framework. The results of empirical evaluations conducted on a variety of real-world and synthetic datasets demonstrate that the k-Tree methods have greater prediction accuracy over the traditional models. These results highlight the potential of the k-Tree methodology in enhancing predictive analytics by providing a deeper insight into the relationships between samples within the tree space.

Suggested Citation

  • Tian, Xuecheng & Wang, Shuaian & Zhen, Lu & Shen, Zuo-Jun (Max), 2025. "k-Tree: Crossing sharp boundaries in regression trees to find neighbors," European Journal of Operational Research, Elsevier, vol. 324(2), pages 567-579.
  • Handle: RePEc:eee:ejores:v:324:y:2025:i:2:p:567-579
    DOI: 10.1016/j.ejor.2025.02.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221725001547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2025.02.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Romero Morales, Dolores, 2020. "Sparsity in optimal randomized classification trees," European Journal of Operational Research, Elsevier, vol. 284(1), pages 255-272.
    2. Ronilo Ragodos & Tong Wang, 2022. "Disjunctive Rule Lists," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3259-3276, November.
    3. Dieter, Peter & Caron, Matthew & Schryen, Guido, 2023. "Integrating driver behavior into last-mile delivery routing: Combining machine learning and optimization in a hybrid decision support framework," European Journal of Operational Research, Elsevier, vol. 311(1), pages 283-300.
    4. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    5. Junming Liu & Mingfei Teng & Weiwei Chen & Hui Xiong, 2023. "A Cost-Effective Sequential Route Recommender System for Taxi Drivers," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1098-1119, September.
    6. Nathan Kallus & Xiaojie Mao, 2023. "Stochastic Optimization Forests," Management Science, INFORMS, vol. 69(4), pages 1975-1994, April.
    7. Ciampi, Antonio, 1991. "Generalized regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 12(1), pages 57-78, August.
    8. Lin, Yi & Jeon, Yongho, 2006. "Random Forests and Adaptive Nearest Neighbors," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 578-590, June.
    9. Elise Dusseldorp & Jacqueline Meulman, 2004. "The regression trunk approach to discover treatment covariate interaction," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 355-374, September.
    10. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    11. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Morales, Dolores Romero, 2022. "On sparse optimal regression trees," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1045-1054.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    2. David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
    3. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    4. Olga Takacs & Janos Vincze, 2018. "The within-job gender pay gap in Hungary," CERS-IE WORKING PAPERS 1834, Institute of Economics, Centre for Economic and Regional Studies.
    5. Tommaso Aldinucci & Matteo Lapucci, 2024. "Loss-optimal classification trees: a generalized framework and the logistic case," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 323-350, July.
    6. Uguccioni, James, 2022. "The long-run effects of parental unemployment in childhood," CLEF Working Paper Series 45, Canadian Labour Economics Forum (CLEF), University of Waterloo.
    7. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    8. Christophe Dutang & Quentin Guibert, 2021. "An explicit split point procedure in model-based trees allowing for a quick fitting of GLM trees and GLM forests," Post-Print hal-03448250, HAL.
    9. Nan-Ting Liu & Feng-Chang Lin & Yu-Shan Shih, 2020. "Count regression trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 5-27, March.
    10. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    11. Ramosaj, Burim & Pauly, Markus, 2019. "Consistent estimation of residual variance with random forest Out-Of-Bag errors," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 49-57.
    12. Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.
    13. Yifei Sun & Sy Han Chiou & Mei‐Cheng Wang, 2020. "ROC‐guided survival trees and ensembles," Biometrics, The International Biometric Society, vol. 76(4), pages 1177-1189, December.
    14. Charles B. Perkins & J. Christina Wang, 2019. "How Magic a Bullet Is Machine Learning for Credit Analysis? An Exploration with FinTech Lending Data," Working Papers 19-16, Federal Reserve Bank of Boston.
    15. Zhexiao Lin & Fang Han, 2022. "On regression-adjusted imputation estimators of the average treatment effect," Papers 2212.05424, arXiv.org, revised Jan 2023.
    16. Lei Bill Wang & Zhenbang Jiao & Fangyi Wang, 2025. "Modifying Final Splits of Classification Tree for Fine-tuning Subpopulation Target in Policy Making," Papers 2502.15072, arXiv.org.
    17. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    18. William Arbour, 2021. "Can Recidivism be Prevented from Behind Bars? Evidence from a Behavioral Program," Working Papers tecipa-683, University of Toronto, Department of Economics.
    19. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:324:y:2025:i:2:p:567-579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.