IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v32y2024i2d10.1007_s11750-024-00674-y.html
   My bibliography  Save this article

Loss-optimal classification trees: a generalized framework and the logistic case

Author

Listed:
  • Tommaso Aldinucci

    (University of Florence)

  • Matteo Lapucci

    (University of Florence)

Abstract

Classification trees are one of the most common models in interpretable machine learning. Although such models are usually built with greedy strategies, in recent years, thanks to remarkable advances in mixed-integer programming (MIP) solvers, several exact formulations of the learning problem have been developed. In this paper, we argue that some of the most relevant ones among these training models can be encapsulated within a general framework, whose instances are shaped by the specification of loss functions and regularizers. Next, we introduce a novel realization of this framework: specifically, we consider the logistic loss, handled in the MIP setting by a piece-wise linear approximation, and couple it with $$\ell _1$$ ℓ 1 -regularization terms. The resulting optimal logistic classification tree model numerically proves to be able to induce trees with enhanced interpretability properties and competitive generalization capabilities, compared to the state-of-the-art MIP-based approaches.

Suggested Citation

  • Tommaso Aldinucci & Matteo Lapucci, 2024. "Loss-optimal classification trees: a generalized framework and the logistic case," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 323-350, July.
  • Handle: RePEc:spr:topjnl:v:32:y:2024:i:2:d:10.1007_s11750-024-00674-y
    DOI: 10.1007/s11750-024-00674-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-024-00674-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-024-00674-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Romero Morales, Dolores, 2020. "Sparsity in optimal randomized classification trees," European Journal of Operational Research, Elsevier, vol. 284(1), pages 255-272.
    2. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Morales, Dolores Romero, 2022. "On sparse optimal regression trees," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1045-1054.
    3. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    4. Oktay Günlük & Jayant Kalagnanam & Minhan Li & Matt Menickelly & Katya Scheinberg, 2021. "Optimal decision trees for categorical data via integer programming," Journal of Global Optimization, Springer, vol. 81(1), pages 233-260, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Morales, Dolores Romero, 2022. "On sparse optimal regression trees," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1045-1054.
    2. Victor Blanco & Alberto Japón & Justo Puerto, 2022. "Robust optimal classification trees under noisy labels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 155-179, March.
    3. Benítez-Peña, Sandra & Carrizosa, Emilio & Guerrero, Vanesa & Jiménez-Gamero, M. Dolores & Martín-Barragán, Belén & Molero-Río, Cristina & Ramírez-Cobo, Pepa & Romero Morales, Dolores & Sillero-Denami, 2021. "On sparse ensemble methods: An application to short-term predictions of the evolution of COVID-19," European Journal of Operational Research, Elsevier, vol. 295(2), pages 648-663.
    4. Piccialli, Veronica & Romero Morales, Dolores & Salvatore, Cecilia, 2024. "Supervised feature compression based on counterfactual analysis," European Journal of Operational Research, Elsevier, vol. 317(2), pages 273-285.
    5. Emilio Carrizosa & Vanesa Guerrero & Dolores Romero Morales, 2023. "On mathematical optimization for clustering categories in contingency tables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 407-429, June.
    6. T. Herzog & M. Brandt & A. Trinchi & A. Sola & A. Molotnikov, 2024. "Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1407-1437, April.
    7. Ferdinand Bollwein, 2024. "A pivot-based simulated annealing algorithm to determine oblique splits for decision tree induction," Computational Statistics, Springer, vol. 39(2), pages 803-834, April.
    8. Dimitris Bertsimas & Cheol Woo Kim, 2023. "A Prescriptive Machine Learning Approach to Mixed-Integer Convex Optimization," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1225-1241, November.
    9. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    10. Ikeda, Shunnosuke & Nishimura, Naoki & Sukegawa, Noriyoshi & Takano, Yuichi, 2023. "Prescriptive price optimization using optimal regression trees," Operations Research Perspectives, Elsevier, vol. 11(C).
    11. Carrizosa, Emilio & Ramírez-Ayerbe, Jasone & Romero Morales, Dolores, 2024. "Mathematical optimization modelling for group counterfactual explanations," European Journal of Operational Research, Elsevier, vol. 319(2), pages 399-412.
    12. Davila-Pena, Laura & García-Jurado, Ignacio & Casas-Méndez, Balbina, 2022. "Assessment of the influence of features on a classification problem: An application to COVID-19 patients," European Journal of Operational Research, Elsevier, vol. 299(2), pages 631-641.
    13. Sanjay Jain & Jónas Oddur Jónasson & Jean Pauphilet & Kamalini Ramdas, 2023. "Robust combination testing: methods and application to COVID-19 detection," Economics Series Working Papers 1009, University of Oxford, Department of Economics.
    14. Teddy Lazebnik & Tzach Fleischer & Amit Yaniv-Rosenfeld, 2023. "Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks," Sustainability, MDPI, vol. 15(14), pages 1-9, July.
    15. Tsionas, Mike, 2022. "Efficiency estimation using probabilistic regression trees with an application to Chilean manufacturing industries," International Journal of Production Economics, Elsevier, vol. 249(C).
    16. Andreas Dellnitz & Andreas Kleine & Madjid Tavana, 2024. "An integrated data envelopment analysis and regression tree method for new product price estimation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1189-1211, December.
    17. Emilio Carrizosa & Dolores Romero Morales, 2024. "Guest editorial to the Special Issue on Machine Learning and Mathematical Optimization in TOP-Transactions in Operations Research," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 351-353, October.
    18. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    19. Carrizosa, Emilio & Kurishchenko, Kseniia & Marín, Alfredo & Romero Morales, Dolores, 2022. "Interpreting clusters via prototype optimization," Omega, Elsevier, vol. 107(C).
    20. Wu, Tsung-Hsi & Chen, Pei-Yuan & Chen, Chien-Chih & Chung, Meng-Ju & Ye, Zheng-Kai & Li, Ming-Hsu, 2024. "Classification and Regression Tree (CART)-based estimation of soil water content based on meteorological inputs and explorations of hydrodynamics behind," Agricultural Water Management, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:32:y:2024:i:2:d:10.1007_s11750-024-00674-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.