IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03448250.html
   My bibliography  Save this paper

An explicit split point procedure in model-based trees allowing for a quick fitting of GLM trees and GLM forests

Author

Listed:
  • Christophe Dutang

    (CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Quentin Guibert

    (CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

Abstract

Classification and regression trees (CART) prove to be a true alternative to full parametric models such as linear models (LM) and generalized linear models (GLM). Although CART suffer from a biased variable selection issue, they are commonly applied to various topics and used for tree ensembles and random forests because of their simplicity and computation speed. Conditional inference trees and model-based trees algorithms for which variable selection is tackled via fluctuation tests are known to give more accurate and interpretable results than CART, but yield longer computation times. Using a closed-form maximum likelihood estimator for GLM, this paper proposes a split point procedure based on the explicit likelihood in order to save time when searching for the best split for a given splitting variable. A simulation study for non-Gaussian response is performed to assess the computational gain when building GLM trees. We also propose a benchmark on simulated and empirical datasets of GLM trees against CART, conditional inference trees and LM trees in order to identify situations where GLM trees are efficient. This approach is extended to multiway split trees and log-transformed distributions. Making GLM trees possible through a new split point procedure allows us to investigate the use of GLM in ensemble methods. We propose a numerical comparison of GLM forests against other random forest-type approaches. Our simulation analyses show cases where GLM forests are good challengers to random forests.

Suggested Citation

  • Christophe Dutang & Quentin Guibert, 2021. "An explicit split point procedure in model-based trees allowing for a quick fitting of GLM trees and GLM forests," Post-Print hal-03448250, HAL.
  • Handle: RePEc:hal:journl:hal-03448250
    DOI: 10.1007/s11222-021-10059-x
    Note: View the original document on HAL open archive server: https://hal.science/hal-03448250
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03448250/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s11222-021-10059-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Farkas, Sébastien & Lopez, Olivier & Thomas, Maud, 2021. "Cyber claim analysis using Generalized Pareto regression trees with applications to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 92-105.
    2. Alexandre Brouste & Christophe Dutang & Tom Rohmer, 2020. "Closed-form maximum likelihood estimator for generalized linear models in the case of categorical explanatory variables: application to insurance loss modeling," Computational Statistics, Springer, vol. 35(2), pages 689-724, June.
    3. Ciampi, Antonio, 1991. "Generalized regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 12(1), pages 57-78, August.
    4. G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
    5. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    6. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    7. Achim Zeileis & Kurt Hornik, 2007. "Generalized M‐fluctuation tests for parameter instability," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 488-508, November.
    8. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    9. Kim H. & Loh W.Y., 2001. "Classification Trees With Unbiased Multiway Splits," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 589-604, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Brouste & Christophe Dutang & Tom Rohmer, 2022. "A Closed-form Alternative Estimator for GLM with Categorical Explanatory Variables," Post-Print hal-03689206, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    2. Yu-Shan Shih & Kuang-Hsun Liu, 2019. "Regression trees for detecting preference patterns from rank data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 683-702, September.
    3. Nan-Ting Liu & Feng-Chang Lin & Yu-Shan Shih, 2020. "Count regression trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 5-27, March.
    4. Linwei Hu & Jie Chen & Joel Vaughan & Soroush Aramideh & Hanyu Yang & Kelly Wang & Agus Sudjianto & Vijayan N. Nair, 2021. "Supervised Machine Learning Techniques: An Overview with Applications to Banking," International Statistical Review, International Statistical Institute, vol. 89(3), pages 573-604, December.
    5. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    6. Tomàs Aluja-Banet & Eduard Nafria, 2003. "Stability and scalability in decision trees," Computational Statistics, Springer, vol. 18(3), pages 505-520, September.
    7. Jonathan Zufferey, 2016. "Investigating the migrant mortality advantage at the intersections of social stratification in Switzerland," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(32), pages 899-926.
    8. Ollech, Daniel & Webel, Karsten, 2020. "A random forest-based approach to identifying the most informative seasonality tests," Discussion Papers 55/2020, Deutsche Bundesbank.
    9. Shih, Y. -S., 2004. "A note on split selection bias in classification trees," Computational Statistics & Data Analysis, Elsevier, vol. 45(3), pages 457-466, April.
    10. L. Lombardo & M. Cama & C. Conoscenti & M. Märker & E. Rotigliano, 2015. "Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1621-1648, December.
    11. Leo Guelman & Montserrat Guillen & Ana M. Pérez-Marín, 2014. "Optimal personalized treatment rules for marketing interventions: A review of methods, a new proposal, and an insurance case study," Working Papers 2014-06, Universitat de Barcelona, UB Riskcenter.
    12. Rachel Sippy & Daniel F Farrell & Daniel A Lichtenstein & Ryan Nightingale & Megan A Harris & Joseph Toth & Paris Hantztidiamantis & Nicholas Usher & Cinthya Cueva Aponte & Julio Barzallo Aguilar & An, 2020. "Severity Index for Suspected Arbovirus (SISA): Machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(2), pages 1-20, February.
    13. Quan Zhiyu & Valdez Emiliano A., 2018. "Predictive analytics of insurance claims using multivariate decision trees," Dependence Modeling, De Gruyter, vol. 6(1), pages 377-407, December.
    14. Linwei Hu & Jie Chen & Joel Vaughan & Hanyu Yang & Kelly Wang & Agus Sudjianto & Vijayan N. Nair, 2020. "Supervised Machine Learning Techniques: An Overview with Applications to Banking," Papers 2008.04059, arXiv.org.
    15. Gray, J. Brian & Fan, Guangzhe, 2008. "Classification tree analysis using TARGET," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1362-1372, January.
    16. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    17. Debdatta Saha & T. M. Vasuprada, 2021. "Investigating Commercial Incentives for Innovation: An Application in Traditional Medicine," Studies in Microeconomics, , vol. 9(1), pages 66-91, June.
    18. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    19. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    20. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.

    More about this item

    Keywords

    GLM; model-based recursive partitioning; GLM trees; random forest; GLM forest;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03448250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.