IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v323y2025i2p571-582.html
   My bibliography  Save this article

Connections between multiple-objective programming and weight restricted data envelopment analysis: The role of the ordering cone

Author

Listed:
  • Korhonen, Pekka
  • Soleimani-damaneh, Majid
  • Wallenius, Jyrki

Abstract

This paper explores some new, important and interesting connections between Multiple-Objective Programming (MOP) and Data Envelopment Analysis (DEA). We show that imposing weight restrictions in DEA corresponds to changing the ordering cone in MOP in a specific way. The new ordering cone is constructed and its properties are proved, providing useful insights about the connections between MOP and DEA. After providing several theoretical results, we illustrate them on a real-world data set. In addition to their theoretical appeal, our results hold significant practical importance for several reasons which are addressed in the paper.

Suggested Citation

  • Korhonen, Pekka & Soleimani-damaneh, Majid & Wallenius, Jyrki, 2025. "Connections between multiple-objective programming and weight restricted data envelopment analysis: The role of the ordering cone," European Journal of Operational Research, Elsevier, vol. 323(2), pages 571-582.
  • Handle: RePEc:eee:ejores:v:323:y:2025:i:2:p:571-582
    DOI: 10.1016/j.ejor.2024.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724009445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tarja Joro & Pekka Korhonen & Jyrki Wallenius, 1998. "Structural Comparison of Data Envelopment Analysis and Multiple Objective Linear Programming," Management Science, INFORMS, vol. 44(7), pages 962-970, July.
    2. repec:bla:scandj:v:87:y:1985:i:4:p:594-604 is not listed on IDEAS
    3. Fliege, Jörg & Werner, Ralf, 2014. "Robust multiobjective optimization & applications in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 422-433.
    4. Lidia Angulo-Meza & Marcos Lins, 2002. "Review of Methods for Increasing Discrimination in Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 116(1), pages 225-242, October.
    5. Liu, Fuh-Hwa Franklin & Huang, Chueng-Chiu & Yen, Yu-Lee, 2000. "Using DEA to obtain efficient solutions for multi-objective 0-1 linear programs," European Journal of Operational Research, Elsevier, vol. 126(1), pages 51-68, October.
    6. Y-W Chen & M Larbani & Y-P Chang, 2009. "Multiobjective data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(11), pages 1556-1566, November.
    7. Hatami-Marbini, Adel & Emrouznejad, Ali & Tavana, Madjid, 2011. "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making," European Journal of Operational Research, Elsevier, vol. 214(3), pages 457-472, November.
    8. Soleimani-damaneh, Majid & Pourkarimi, Latif & Korhonen, Pekka J. & Wallenius, Jyrki, 2021. "An operational test for the existence of a consistent increasing quasi-concave value function," European Journal of Operational Research, Elsevier, vol. 289(1), pages 232-239.
    9. M. Soleimani-damaneh & M. Zarepisheh, 2009. "Linear transformations to decrease computational requirements of solving some known linear programming models," Annals of Operations Research, Springer, vol. 172(1), pages 37-43, November.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Hadi-Vencheh, Abdollah & Foroughi, Ali Asghar & Soleimani-damaneh, Majid, 2008. "A DEA model for resource allocation," Economic Modelling, Elsevier, vol. 25(5), pages 983-993, September.
    12. Camanho, Ana Santos & Silva, Maria Conceicao & Piran, Fabio Sartori & Lacerda, Daniel Pacheco, 2024. "A literature review of economic efficiency assessments using Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 315(1), pages 1-18.
    13. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    14. Korhonen, Pekka J. & Soleimani-damaneh, Majid & Wallenius, Jyrki, 2011. "Ratio-based RTS determination in weight-restricted DEA models," European Journal of Operational Research, Elsevier, vol. 215(2), pages 431-438, December.
    15. Jahanshahloo, G.R. & Soleimani-damaneh, M. & Ghobadi, S., 2015. "Inverse DEA under inter-temporal dependence using multiple-objective programming," European Journal of Operational Research, Elsevier, vol. 240(2), pages 447-456.
    16. Li, Xiao-Bai & Reeves, Gary R., 1999. "A multiple criteria approach to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 115(3), pages 507-517, June.
    17. Boaz Golany, 1988. "Note---A Note on Including Ordinal Relations Among Multipliers in Data Envelopment Analysis," Management Science, INFORMS, vol. 34(8), pages 1029-1033, August.
    18. Doyle, J & Green, R, 1993. "Data envelopment analysis and multiple criteria decision making," Omega, Elsevier, vol. 21(6), pages 713-715, November.
    19. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    20. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    21. Omrani, Hashem & Emrouznejad, Ali & Shamsi, Meisam & Fahimi, Pegah, 2022. "Evaluation of insurance companies considering uncertainty: A multi-objective network data envelopment analysis model with negative data and undesirable outputs," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    22. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    23. Podinovski, Victor V., 2016. "Optimal weights in DEA models with weight restrictions," European Journal of Operational Research, Elsevier, vol. 254(3), pages 916-924.
    24. Kaoru Tone, 2001. "On Returns to Scale under Weight Restrictions in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 16(1), pages 31-47, July.
    25. E. Thanassoulis & R. Allen, 1998. "Simulating Weights Restrictions in Data Envelopment Analysis by Means of Unobserved DMUs," Management Science, INFORMS, vol. 44(4), pages 586-594, April.
    26. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    27. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dyckhoff, Harald & Souren, Rainer, 2022. "Integrating multiple criteria decision analysis and production theory for performance evaluation: Framework and review," European Journal of Operational Research, Elsevier, vol. 297(3), pages 795-816.
    2. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    3. Ghasemi, M.-R. & Ignatius, Joshua & Emrouznejad, Ali, 2014. "A bi-objective weighted model for improving the discrimination power in MCDEA," European Journal of Operational Research, Elsevier, vol. 233(3), pages 640-650.
    4. Ghasemi, Mohammad Reza & Ignatius, Joshua & Rezaee, Babak, 2019. "Improving discriminating power in data envelopment models based on deviation variables framework," European Journal of Operational Research, Elsevier, vol. 278(2), pages 442-447.
    5. Camanho, Ana Santos & Silva, Maria Conceicao & Piran, Fabio Sartori & Lacerda, Daniel Pacheco, 2024. "A literature review of economic efficiency assessments using Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 315(1), pages 1-18.
    6. Le, Minh Hanh & Afsharian, Mohsen & Ahn, Heinz, 2021. "Inverse Frontier-based Benchmarking for Investigating the Efficiency and Achieving the Targets in the Vietnamese Education System," Omega, Elsevier, vol. 103(C).
    7. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    8. Somayeh Razipour-GhalehJough & Farhad Hosseinzadeh Lotfi & Gholamreza Jahanshahloo & Mohsen Rostamy-malkhalifeh & Hamid Sharafi, 2020. "Finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis," Annals of Operations Research, Springer, vol. 288(2), pages 755-787, May.
    9. Suzuki, Soushi & Nijkamp, Peter & Rietveld, Piet & Pels, Eric, 2010. "A distance friction minimization approach in data envelopment analysis: A comparative study on airport efficiency," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1104-1115, December.
    10. Peter Nijkamp & Soushi Suzuki, 2009. "A Generalized Goals-achievement Model in Data Envelopment Analysis: an Application to Efficiency Improvement in Local Government Finance in Japan," Spatial Economic Analysis, Taylor & Francis Journals, vol. 4(3), pages 249-274.
    11. M. Soleimani-damaneh & M. Zarepisheh, 2009. "Linear transformations to decrease computational requirements of solving some known linear programming models," Annals of Operations Research, Springer, vol. 172(1), pages 37-43, November.
    12. Chen, Chien-Ming, 2013. "Super efficiencies or super inefficiencies? Insights from a joint computation model for slacks-based measures in DEA," European Journal of Operational Research, Elsevier, vol. 226(2), pages 258-267.
    13. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    14. Papaioannou, Grammatoula & Podinovski, Victor V., 2023. "Production technologies with ratio inputs and outputs," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1164-1178.
    15. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    16. Victor V. Podinovski & Robert G. Chambers & Kazim Baris Atici & Iryna D. Deineko, 2016. "Marginal Values and Returns to Scale for Nonparametric Production Frontiers," Operations Research, INFORMS, vol. 64(1), pages 236-250, February.
    17. Jahanshahloo, G.R. & Soleimani-damaneh, M. & Ghobadi, S., 2015. "Inverse DEA under inter-temporal dependence using multiple-objective programming," European Journal of Operational Research, Elsevier, vol. 240(2), pages 447-456.
    18. Podinovski, Victor V., 2017. "Returns to scale in convex production technologies," European Journal of Operational Research, Elsevier, vol. 258(3), pages 970-982.
    19. Leonardo Tomazeli Duarte & Alex Pincelli Mussio & Cristiano Torezzan, 2020. "Dealing with missing information in data envelopment analysis by means of low-rank matrix completion," Annals of Operations Research, Springer, vol. 286(1), pages 719-732, March.
    20. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:323:y:2025:i:2:p:571-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.