IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v321y2025i3p974-990.html
   My bibliography  Save this article

A multiple asset-type, collaborative vehicle routing problem with proximal servicing of demands

Author

Listed:
  • Donnel, Stephen D.
  • Lunday, Brian J.
  • Boardman, Nicholas T.

Abstract

This research examines the problem of routing multiple assets of different types over a network to service demands in a collaborative manner. The servicing is collaborative in that, when servicing a demand, the different types of assets must do so nearly simultaneously. Moreover, whereas some asset types must service demands by visiting them, other asset types may provide service proximally. This study sets forth a mixed-integer linear program to model this variant of a vehicle routing problem. In addition to directly solving problem instances via a commercial solver, this research proposes two permutations of a model decomposition heuristic, as well as two preprocessing techniques to impose instance-specific bounds on selected decision variables. Comparative testing on mesh networks evaluates nine combinations of solution methods and preprocessing options to solve a set of 216 instances that vary significant parameters. Results manifest trade-offs between the likelihood of finding a feasible solution with bounded computational effort and the relative quality of solutions identified. For larger networks, the preprocessing technique leveraging a nearest neighbor heuristic in combination with any solution method most frequently identified feasible solutions for the set of test instances (i.e., ∼90% of instances), with lesser solution quality (i.e., within 15% of the best solutions identified, on average). Worst performing for larger networks was a model decomposition technique that first routes assets providing service proximally, and omitting either preprocessing technique; although this combination yielded the best solutions when it identified a feasible solution, it only did so for ∼55% of instances. Other solution method performances exhibit noteworthy nuance, as detailed herein. Further testing of the solution procedures on 216 additional instances for a scenario motivated by a disaster relief using a city road network yielded relatively consistent results; the superlative method leveraged model decomposition and a nearest neighbor preprocessing heuristic, albeit when routing proximally-serving assets first.

Suggested Citation

  • Donnel, Stephen D. & Lunday, Brian J. & Boardman, Nicholas T., 2025. "A multiple asset-type, collaborative vehicle routing problem with proximal servicing of demands," European Journal of Operational Research, Elsevier, vol. 321(3), pages 974-990.
  • Handle: RePEc:eee:ejores:v:321:y:2025:i:3:p:974-990
    DOI: 10.1016/j.ejor.2024.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724007628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timo Gschwind & Stefan Irnich, 2015. "Effective Handling of Dynamic Time Windows and Its Application to Solving the Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 49(2), pages 335-354, May.
    2. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    3. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    4. Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.
    5. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    6. Yusen Ye & Wen Jiao & Hong Yan, 2020. "Managing Relief Inventories Responding to Natural Disasters: Gaps Between Practice and Literature," Production and Operations Management, Production and Operations Management Society, vol. 29(4), pages 807-832, April.
    7. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    8. Chang, Kuo-Hao & Hsiung, Tzu-Yi & Chang, Tzu-Yin, 2022. "Multi-Commodity distribution under uncertainty in disaster response phase: Model, solution method, and an empirical study," European Journal of Operational Research, Elsevier, vol. 303(2), pages 857-876.
    9. Noham, Reut & Tzur, Michal, 2018. "Designing humanitarian supply chains by incorporating actual post-disaster decisions," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1064-1077.
    10. Brian Lunday & Hanif Sherali & Kevin Lunday, 2012. "The coastal seaspace patrol sector design and allocation problem," Computational Management Science, Springer, vol. 9(4), pages 483-514, November.
    11. Chen, Cheng & Demir, Emrah & Huang, Yuan, 2021. "An adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and delivery robots," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1164-1180.
    12. Yinglei Li & Sung Hoon Chung, 2019. "Disaster relief routing under uncertainty: A robust optimization approach," IISE Transactions, Taylor & Francis Journals, vol. 51(8), pages 869-886, August.
    13. Yang, Senyan & Ning, Lianju & Shang, Pan & (Carol) Tong, Lu, 2020. "Augmented Lagrangian relaxation approach for logistics vehicle routing problem with mixed backhauls and time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    14. Liu, Bingsheng & Sheu, Jiuh-Biing & Zhao, Xue & Chen, Yuan & Zhang, Wei, 2020. "Decision making on post-disaster rescue routing problems from the rescue efficiency perspective," European Journal of Operational Research, Elsevier, vol. 286(1), pages 321-335.
    15. Yong Wang & Jingxin Zhou & Yaoyao Sun & Xiuwen Wang & Jiayi Zhe & Haizhong Wang, 2022. "Electric Vehicle Charging Station Location-Routing Problem with Time Windows and Resource Sharing," Sustainability, MDPI, vol. 14(18), pages 1-31, September.
    16. Mahmoudi, Monirehalsadat & Chen, Junhua & Shi, Tie & Zhang, Yongxiang & Zhou, Xuesong, 2019. "A cumulative service state representation for the pickup and delivery problem with transfers," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 351-380.
    17. de la Torre, Luis E. & Dolinskaya, Irina S. & Smilowitz, Karen R., 2012. "Disaster relief routing: Integrating research and practice," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 88-97.
    18. Sean Grogan & Robert Pellerin & Michel Gamache, 2021. "Using tornado-related weather data to route unmanned aerial vehicles to locate damage and victims," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 905-939, December.
    19. Alberto Ceselli & Giovanni Righini & Matteo Salani, 2009. "A Column Generation Algorithm for a Rich Vehicle-Routing Problem," Transportation Science, INFORMS, vol. 43(1), pages 56-69, February.
    20. Claudio Gambella & Joe Naoum-Sawaya & Bissan Ghaddar, 2018. "The Vehicle Routing Problem with Floating Targets: Formulation and Solution Approaches," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 554-569, August.
    21. Christian Tilk & Katharina Olkis & Stefan Irnich, 2021. "The last-mile vehicle routing problem with delivery options," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 877-904, December.
    22. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Disaster preparedness in humanitarian logistics: A collaborative approach for resource management in floods," European Journal of Operational Research, Elsevier, vol. 264(3), pages 978-993.
    23. Wei Zhang & Alexandre Jacquillat & Kai Wang & Shuaian Wang, 2023. "Routing Optimization with Vehicle–Customer Coordination," Management Science, INFORMS, vol. 69(11), pages 6876-6897, November.
    24. Goel, Asvin & Gruhn, Volker, 2008. "A General Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 650-660, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Alcaraz, Juan J. & Caballero-Arnaldos, Luis & Vales-Alonso, Javier, 2019. "Rich vehicle routing problem with last-mile outsourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 263-286.
    3. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    4. Julia Rieck & Jürgen Zimmermann, 2010. "A new mixed integer linear model for a rich vehicle routing problem with docking constraints," Annals of Operations Research, Springer, vol. 181(1), pages 337-358, December.
    5. Yang, Ying & Hao, Xiaodeng & Wang, Shuaian, 2025. "The drone scheduling problem in shore-to-ship delivery: A time discretization-based model with an exact solving approach," Transportation Research Part B: Methodological, Elsevier, vol. 191(C).
    6. Taş, D. & Gendreau, M. & Dellaert, N. & van Woensel, T. & de Kok, A.G., 2014. "Vehicle routing with soft time windows and stochastic travel times: A column generation and branch-and-price solution approach," European Journal of Operational Research, Elsevier, vol. 236(3), pages 789-799.
    7. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    8. Guy Desaulniers & François Lessard & Ahmed Hadjar, 2008. "Tabu Search, Partial Elementarity, and Generalized k -Path Inequalities for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 387-404, August.
    9. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    10. S. Irnich, 2008. "A Unified Modeling and Solution Framework for Vehicle Routing and Local Search-Based Metaheuristics," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 270-287, May.
    11. Shijin Wang & Xiaodong Wang & Xin Liu & Jianbo Yu, 2018. "A Bi-Objective Vehicle-Routing Problem with Soft Time Windows and Multiple Depots to Minimize the Total Energy Consumption and Customer Dissatisfaction," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    12. Schneider, Michael, 2016. "The vehicle-routing problem with time windows and driver-specific times," European Journal of Operational Research, Elsevier, vol. 250(1), pages 101-119.
    13. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    14. Spliet, Remy & Desaulniers, Guy, 2015. "The discrete time window assignment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 244(2), pages 379-391.
    15. Gschwind, Timo, 2015. "A comparison of column-generation approaches to the Synchronized Pickup and Delivery Problem," European Journal of Operational Research, Elsevier, vol. 247(1), pages 60-71.
    16. Ciancio, Claudio & Laganá, Demetrio & Vocaturo, Francesca, 2018. "Branch-price-and-cut for the Mixed Capacitated General Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 267(1), pages 187-199.
    17. Said Dabia & Stefan Ropke & Tom van Woensel & Ton De Kok, 2013. "Branch and Price for the Time-Dependent Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 47(3), pages 380-396, August.
    18. TALARICO, Luca & MEISEL, Frank & SÖRENSEN, Kenneth, 2014. "Ambulance routing for disaster response with patient groups," Working Papers 2014005, University of Antwerp, Faculty of Business and Economics.
    19. Cortés, Cristián E. & Gendreau, Michel & Rousseau, Louis Martin & Souyris, Sebastián & Weintraub, Andrés, 2014. "Branch-and-price and constraint programming for solving a real-life technician dispatching problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 300-312.
    20. Schneider, Kellie & Nurre, Sarah G., 2019. "A multi-criteria vehicle routing approach to improve the compliance audit schedule for food banks," Omega, Elsevier, vol. 84(C), pages 127-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:321:y:2025:i:3:p:974-990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.