IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v43y2021i4d10.1007_s00291-021-00640-1.html
   My bibliography  Save this article

Using tornado-related weather data to route unmanned aerial vehicles to locate damage and victims

Author

Listed:
  • Sean Grogan

    (Polytechnique Montréal)

  • Robert Pellerin

    (Polytechnique Montréal)

  • Michel Gamache

    (Polytechnique Montréal)

Abstract

This paper presents a framework for the use of unmanned aerial vehicles (UAVs) equipped with cameras and wireless sensors to search an area after the occurrence of a tornado. This paper attempts to demonstrate how tornado weather data can be incorporated into search and rescue procedures to allocate and route the UAVs. Traditionally, the time to assess and search an area after a tornado strikes is on the order of several days. Incorporating UAVs into a search and rescue team’s available tools can reduce this time span to the order of hours. These methods are applied and model in this project to three real-world cases. Several methods for creating ”waypoints,” points of interest for the UAVs to inspect, to route the UAVs were tested. An analysis was performed to compare the time it took to generate the waypoints and the resulting objective function value. It is observed that while there is an opportunity to use exact methods to generate waypoints, our proposed heuristic is sufficient for the rapid response needed in post-disaster relief.

Suggested Citation

  • Sean Grogan & Robert Pellerin & Michel Gamache, 2021. "Using tornado-related weather data to route unmanned aerial vehicles to locate damage and victims," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 905-939, December.
  • Handle: RePEc:spr:orspec:v:43:y:2021:i:4:d:10.1007_s00291-021-00640-1
    DOI: 10.1007/s00291-021-00640-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-021-00640-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-021-00640-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Walton Pereira Coutinho & Roberto Quirino do Nascimento & Artur Alves Pessoa & Anand Subramanian, 2016. "A Branch-and-Bound Algorithm for the Close-Enough Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 752-765, November.
    2. Serap Ercan Comert & Harun Resit Yazgan & Sena Kır & Furkan Yener, 2018. "A cluster first-route second approach for a capacitated vehicle routing problem: a case study," International Journal of Procurement Management, Inderscience Enterprises Ltd, vol. 11(4), pages 399-419.
    3. Mahmoud Golabi & Seyed Mahdi Shavarani & Gokhan Izbirak, 2017. "An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1545-1565, July.
    4. Laporte, Gilbert, 1992. "The vehicle routing problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(3), pages 345-358, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donnel, Stephen D. & Lunday, Brian J. & Boardman, Nicholas T., 2025. "A multiple asset-type, collaborative vehicle routing problem with proximal servicing of demands," European Journal of Operational Research, Elsevier, vol. 321(3), pages 974-990.
    2. Maria Elena Bruni & Sara Khodaparasti, 2022. "A Variable Neighborhood Descent Matheuristic for the Drone Routing Problem with Beehives Sharing," Sustainability, MDPI, vol. 14(16), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malihe Niksirat & Mohsen Saffarian & Javad Tayyebi & Adrian Marius Deaconu & Delia Elena Spridon, 2024. "Fuzzy Multi-Objective, Multi-Period Integrated Routing–Scheduling Problem to Distribute Relief to Disaster Areas: A Hybrid Ant Colony Optimization Approach," Mathematics, MDPI, vol. 12(18), pages 1-17, September.
    2. Du, Jianhui & Zhang, Zhiqin & Wang, Xu & Lau, Hoong Chuin, 2023. "A hierarchical optimization approach for dynamic pickup and delivery problem with LIFO constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    3. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    4. Hughes, Michael S. & Lunday, Brian J. & Weir, Jeffrey D. & Hopkinson, Kenneth M., 2021. "The multiple shortest path problem with path deconfliction," European Journal of Operational Research, Elsevier, vol. 292(3), pages 818-829.
    5. Sepehr Nemati & Oleg V. Shylo & Oleg A. Prokopyev & Andrew J. Schaefer, 2016. "The Surgical Patient Routing Problem: A Central Planner Approach," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 657-673, November.
    6. Dessouky, Maged M & Shao, Yihuan E, 2017. "Routing Strategies for Efficient Deployment of Alternative Fuel Vehicles for Freight Delivery," Institute of Transportation Studies, Working Paper Series qt0nj024qn, Institute of Transportation Studies, UC Davis.
    7. Bahrami, Sina & Nourinejad, Mehdi & Yin, Yafeng & Wang, Hai, 2023. "The three-sided market of on-demand delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    8. Özlü, Oğuzhan & Sokol, Joel, 2016. "An optimization approach to designing a baseball scout network," European Journal of Operational Research, Elsevier, vol. 255(3), pages 948-960.
    9. Stefan Poikonen & Bruce Golden, 2020. "The Mothership and Drone Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 249-262, April.
    10. Chardy, Matthieu & Klopfenstein, Olivier, 2012. "Handling uncertainties in vehicle routing problems through data preprocessing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 667-683.
    11. Rajeev Kumar, 2022. "A Gig Worker-Centric Approach for Efficient Picking and Delivery of Electric Scooters," International Journal of Business Analytics (IJBAN), IGI Global Scientific Publishing, vol. 9(1), pages 1-14, January.
    12. Mina, Hokey & Jayaraman, Vaidyanathan & Srivastava, Rajesh, 1998. "Combined location-routing problems: A synthesis and future research directions," European Journal of Operational Research, Elsevier, vol. 108(1), pages 1-15, July.
    13. van Gils, Teun & Caris, An & Ramaekers, Katrien & Braekers, Kris, 2019. "Formulating and solving the integrated batching, routing, and picker scheduling problem in a real-life spare parts warehouse," European Journal of Operational Research, Elsevier, vol. 277(3), pages 814-830.
    14. Grunert, Tore & Sebastian, Hans-Jurgen, 2000. "Planning models for long-haul operations of postal and express shipment companies," European Journal of Operational Research, Elsevier, vol. 122(2), pages 289-309, April.
    15. Morett, Emilio & Tappia, Elena & Melacini, Marco, 2021. "Scheduling mobile robots in part feeding systems," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 129-149, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    16. Almoustafa, Samira & Hanafi, Said & Mladenović, Nenad, 2013. "New exact method for large asymmetric distance-constrained vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 226(3), pages 386-394.
    17. César Rego, 1998. "A Subpath Ejection Method for the Vehicle Routing Problem," Management Science, INFORMS, vol. 44(10), pages 1447-1459, October.
    18. Oscar Dominguez & Angel Juan & Barry Barrios & Javier Faulin & Alba Agustin, 2016. "Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet," Annals of Operations Research, Springer, vol. 236(2), pages 383-404, January.
    19. Rubio, Francisco & Llopis-Albert, Carlos & Valero, Francisco, 2021. "Multi-objective optimization of costs and energy efficiency associated with autonomous industrial processes for sustainable growth," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    20. Castellano, Davide & Gallo, Mosè & Grassi, Andrea & Santillo, Liberatina C., 2019. "The effect of GHG emissions on production, inventory replenishment and routing decisions in a single vendor-multiple buyers supply chain," International Journal of Production Economics, Elsevier, vol. 218(C), pages 30-42.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:43:y:2021:i:4:d:10.1007_s00291-021-00640-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.