IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v308y2023i3p1126-1141.html
   My bibliography  Save this article

Optimization of preventive replacements dates and covariate inspections for repairable systems in varying environments

Author

Listed:
  • Brenière, Léa
  • Doyen, Laurent
  • Bérenguer, Christophe

Abstract

This study investigates the issue of optimal preventive replacement scheduling for a repairable system, considering its failure/repair history and its environment or degradation, as characterised by covariates. The proposed approach is developed within a recurrent event modelling framework, in which the failure behaviour of the system is defined by its failure intensity, and perfect preventive replacements and imperfect corrective repairs are integrated following a virtual age assumption. The observed heterogeneity between systems is integrated through covariates by following a proportional hazard assumption. These covariates are assumed to be either fixed and represent, for example, the manufacturer origin, or to be dynamic and represent the monitored degradation process.

Suggested Citation

  • Brenière, Léa & Doyen, Laurent & Bérenguer, Christophe, 2023. "Optimization of preventive replacements dates and covariate inspections for repairable systems in varying environments," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1126-1141.
  • Handle: RePEc:eee:ejores:v:308:y:2023:i:3:p:1126-1141
    DOI: 10.1016/j.ejor.2022.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722009304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    2. Safaei, Fatemeh & Ahmadi, Jafar & Balakrishnan, N., 2019. "A repair and replacement policy for repairable systems based on probability and mean of profits," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 143-152.
    3. Zheng, Rui & Chen, Bingkun & Gu, Liudong, 2020. "Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Nguyen, Dinh Tuan & Dijoux, Yann & Fouladirad, Mitra, 2017. "Analytical properties of an imperfect repair model and application in preventive maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 256(2), pages 439-453.
    5. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    6. P J Vlok & J L Coetzee & D Banjevic & A K S Jardine & V Makis, 2002. "Optimal component replacement decisions using vibration monitoring and the proportional-hazards model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(2), pages 193-202, February.
    7. Brenière, Léa & Doyen, Laurent & Bérenguer, Christophe, 2020. "Virtual age models with time-dependent covariates: A framework for simulation, parametric inference and quality of estimation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    8. Love, C. E. & Zhang, Z. G. & Zitron, M. A. & Guo, R., 2000. "A discrete semi-Markov decision model to determine the optimal repair/replacement policy under general repairs," European Journal of Operational Research, Elsevier, vol. 125(2), pages 398-409, September.
    9. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    10. Liu, Xingheng & Vatn, Jørn & Dijoux, Yann & Toftaker, Håkon, 2020. "Unobserved heterogeneity in stable imperfect repair models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    11. Zhou, Yu & Kou, Gang & Xiao, Hui & Peng, Yi & Alsaadi, Fawaz E., 2020. "Sequential imperfect preventive maintenance model with failure intensity reduction with an application to urban buses," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    12. Gilardoni, Gustavo L. & de Toledo, Maria Luiza Guerra & Freitas, Marta A. & Colosimo, Enrico A., 2016. "Dynamics of an optimal maintenance policy for imperfect repair models," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1104-1112.
    13. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    14. Tian, Zhigang & Liao, Haitao, 2011. "Condition based maintenance optimization for multi-component systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 581-589.
    15. Lam, Ji Ye Janet & Banjevic, Dragan, 2015. "A myopic policy for optimal inspection scheduling for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Pedersen, Tom Ivar & Liu, Xingheng & Vatn, Jørn, 2023. "Maintenance optimization of a system subject to two-stage degradation, hard failure, and imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    4. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    5. Cholette, Michael E. & Yu, Hongyang & Borghesani, Pietro & Ma, Lin & Kent, Geoff, 2019. "Degradation modeling and condition-based maintenance of boiler heat exchangers using gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 184-196.
    6. Liu, Bin & Pandey, Mahesh D. & Wang, Xiaolin & Zhao, Xiujie, 2021. "A finite-horizon condition-based maintenance policy for a two-unit system with dependent degradation processes," European Journal of Operational Research, Elsevier, vol. 295(2), pages 705-717.
    7. Safaei, Fatemeh & Ahmadi, Jafar & Balakrishnan, N., 2019. "A repair and replacement policy for repairable systems based on probability and mean of profits," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 143-152.
    8. Zheng, Rui & Zhou, Yifan, 2021. "Comparison of three preventive maintenance warranty policies for products deteriorating with age and a time-varying covariate," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Lu, Biao & Chen, Zhen & Zhao, Xufeng, 2021. "Data-driven dynamic predictive maintenance for a manufacturing system with quality deterioration and online sensors," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    10. Bangalore, P. & Patriksson, M., 2018. "Analysis of SCADA data for early fault detection, with application to the maintenance management of wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 521-532.
    11. Wang, Jingjing & Miao, Yonghao, 2021. "Optimal preventive maintenance policy of the balanced system under the semi-Markov model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Zheng, Rui & Najafi, Seyedvahid & Zhang, Yingzhi, 2022. "A recursive method for the health assessment of systems using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    13. Zhu, Qiushi & Peng, Hao & Timmermans, Bas & van Houtum, Geert-Jan, 2017. "A condition-based maintenance model for a single component in a system with scheduled and unscheduled downs," International Journal of Production Economics, Elsevier, vol. 193(C), pages 365-380.
    14. Ait Mokhtar, El Hassene & Laggoune, Radouane & Chateauneuf, Alaa, 2023. "Imperfect maintenance modeling and assessment of repairable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Peng, Hao & van Houtum, Geert-Jan, 2016. "Joint optimization of condition-based maintenance and production lot-sizing," European Journal of Operational Research, Elsevier, vol. 253(1), pages 94-107.
    16. Zhang, Nan & Deng, Yingjun & Liu, Bin & Zhang, Jun, 2023. "Condition-based maintenance for a multi-component system in a dynamic operating environment," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Brito, Éder S. & Tomazella, Vera L.D. & Ferreira, Paulo H., 2022. "Statistical modeling and reliability analysis of multiple repairable systems with dependent failure times under perfect repair," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    18. Zheng, Rui & Chen, Bingkun & Gu, Liudong, 2020. "Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. Shi, Yue & Xiang, Yisha & Xiao, Hui & Xing, Liudong, 2021. "Joint optimization of budget allocation and maintenance planning of multi-facility transportation infrastructure systems," European Journal of Operational Research, Elsevier, vol. 288(2), pages 382-393.
    20. Pedersen, Tom Ivar & Vatn, Jørn, 2022. "Optimizing a condition-based maintenance policy by taking the preferences of a risk-averse decision maker into account," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:308:y:2023:i:3:p:1126-1141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.