IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v203y2020ics0951832020305408.html
   My bibliography  Save this article

Unobserved heterogeneity in stable imperfect repair models

Author

Listed:
  • Liu, Xingheng
  • Vatn, Jørn
  • Dijoux, Yann
  • Toftaker, HÃ¥kon

Abstract

This study investigates the effect of heterogeneity on the failures of repairable systems that undergo imperfect repairs, which are extensively used in reliability engineering. When considering a group of similar systems, the assumption that the repair processes are independent and identically distributed becomes questionable owing to the unobserved heterogeneity in these systems. The basic model we consider is the Kijima type II virtual age process with constant repair efficiency and a Weibull baseline distribution. We use the frailty models to study the heterogeneity between the systems and, in particular, the gamma-distributed frailty is investigated. We thus derive the asymptotic properties of the mixed repair process and corresponding likelihood estimates, and then evaluate the effects on the model parameter estimation process when heterogeneity is erroneously ignored. Furthermore, when the model is established correctly by accounting for the gamma distribution, we find that the maximum likelihood estimator is inconsistent and propose an alternative approach. Three case studies are presented to illustrate the benefits of taking account of unobserved heterogeneity in the estimation of the aging speed and reliability of assets and in scheduling preventive maintenance activities.

Suggested Citation

  • Liu, Xingheng & Vatn, Jørn & Dijoux, Yann & Toftaker, HÃ¥kon, 2020. "Unobserved heterogeneity in stable imperfect repair models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:reensy:v:203:y:2020:i:c:s0951832020305408
    DOI: 10.1016/j.ress.2020.107039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020305408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kijima, Masaaki & Morimura, Hidenori & Suzuki, Yasusuke, 1988. "Periodical replacement problem without assuming minimal repair," European Journal of Operational Research, Elsevier, vol. 37(2), pages 194-203, November.
    2. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    3. Nguyen, Dinh Tuan & Dijoux, Yann & Fouladirad, Mitra, 2017. "Analytical properties of an imperfect repair model and application in preventive maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 256(2), pages 439-453.
    4. Asfaw, Zeytu Gashaw & Lindqvist, Bo Henry, 2015. "Unobserved heterogeneity in the power law nonhomogeneous Poisson process," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 59-65.
    5. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    6. White, Halbert, 1983. "Corrigendum [Maximum Likelihood Estimation of Misspecified Models]," Econometrica, Econometric Society, vol. 51(2), pages 513-513, March.
    7. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    8. Finkelstein, Maxim, 2015. "On the optimal degree of imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 54-58.
    9. Dijoux, Yann & Fouladirad, Mitra & Nguyen, Dinh Tuan, 2016. "Statistical inference for imperfect maintenance models with missing data," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 84-96.
    10. Slimacek, Vaclav & Lindqvist, Bo Henry, 2017. "Nonhomogeneous Poisson process with nonparametric frailty and covariates," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 75-83.
    11. Liu, Xingheng & Finkelstein, Maxim & Vatn, Jørn & Dijoux, Yann, 2020. "Steady-state imperfect repair models," European Journal of Operational Research, Elsevier, vol. 286(2), pages 538-546.
    12. Laurent Doyen, 2010. "Asymptotic properties of imperfect repair models and estimation of repair efficiency," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(3), pages 296-307, April.
    13. Slimacek, Vaclav & Lindqvist, Bo Henry, 2016. "Nonhomogeneous Poisson process with nonparametric frailty," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 14-23.
    14. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jingqi & Fouladirad, Mitra & Limnios, Nikolaos, 2025. "Sensitivity analysis of an imperfect maintenance policy for Proton-exchange membrane fuel cell based on geometric a semi-Markov model," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    2. Lu, Biao & Chen, Zhen & Zhao, Xufeng, 2021. "Data-driven dynamic predictive maintenance for a manufacturing system with quality deterioration and online sensors," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Jiang, Renyan & Li, Fengping & Xue, Wei & Cao, Yu & Zhang, Kunpeng, 2023. "A robust mean cumulative function estimator and its application to overhaul time optimization for a fleet of heterogeneous repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Maxim Finkelstein & Ji Hwan Cha, 2021. "Rejoinder to “Virtual age, is it real?”," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 37(1), pages 45-52, January.
    5. Brito, Éder S. & Tomazella, Vera L.D. & Ferreira, Paulo H., 2022. "Statistical modeling and reliability analysis of multiple repairable systems with dependent failure times under perfect repair," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Wang, Yangpeng & Li, Shuxiang & Lee, Kangkuen & Tam, Hwayaw & Qu, Yuanju & Huang, Jingyin & Chu, Xianghua, 2023. "Accident risk tensor-specific covariant model for railway accident risk assessment and prediction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Ait Mokhtar, El Hassene & Laggoune, Radouane & Chateauneuf, Alaa, 2023. "Imperfect maintenance modeling and assessment of repairable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Syamsundar, A. & Naikan, V.N.A. & Wu, Shaomin, 2021. "Extended Arithmetic Reduction of Age Models for the Failure Process of a Repairable System," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Brenière, Léa & Doyen, Laurent & Bérenguer, Christophe, 2023. "Optimization of preventive replacements dates and covariate inspections for repairable systems in varying environments," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1126-1141.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezgar Zaki & Abbas Barabadi & Javad Barabady & Ali Nouri Qarahasanlou, 2022. "Observed and unobserved heterogeneity in failure data analysis," Journal of Risk and Reliability, , vol. 236(1), pages 194-207, February.
    2. Liu, Xingheng & Finkelstein, Maxim & Vatn, Jørn & Dijoux, Yann, 2020. "Steady-state imperfect repair models," European Journal of Operational Research, Elsevier, vol. 286(2), pages 538-546.
    3. KENNETH C. LAND & PATRICIA L. McCALL & DANIEL S. NAGIN, 1996. "A Comparison of Poisson, Negative Binomial, and Semiparametric Mixed Poisson Regression Models," Sociological Methods & Research, , vol. 24(4), pages 387-442, May.
    4. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    5. Michael Baker & Samuel A. Rea, 1998. "Employment Spells And Unemployment Insurance Eligibility Requirements," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 80-94, February.
    6. Mroz, Thomas A., 1999. "Discrete factor approximations in simultaneous equation models: Estimating the impact of a dummy endogenous variable on a continuous outcome," Journal of Econometrics, Elsevier, vol. 92(2), pages 233-274, October.
    7. Bodunrin Brown & Bin Liu & Stuart McIntyre & Matthew Revie, 2023. "Reliability evaluation of repairable systems considering component heterogeneity using frailty model," Journal of Risk and Reliability, , vol. 237(4), pages 654-670, August.
    8. Aven, Terje & Rios Insua, David & Soyer, Refik & Zhu, Xiaoyan & Zio, Enrico, 2025. "Fifty years of reliability in operations research," European Journal of Operational Research, Elsevier, vol. 324(2), pages 361-381.
    9. George Neumann, 1996. "Search Models and Duration Data," Econometrics 9602008, University Library of Munich, Germany, revised 07 Mar 1996.
    10. Cho, Jin Seo & White, Halbert, 2010. "Testing for unobserved heterogeneity in exponential and Weibull duration models," Journal of Econometrics, Elsevier, vol. 157(2), pages 458-480, August.
    11. Serge Darolles & Patrick Gagliardini & Christian Gouriéroux, 2012. "Survival of Hedge Funds : Frailty vs Contagion," Working Papers 2012-36, Center for Research in Economics and Statistics.
    12. Xianzheng Huang, 2009. "Diagnosis of Random-Effect Model Misspecification in Generalized Linear Mixed Models for Binary Response," Biometrics, The International Biometric Society, vol. 65(2), pages 361-368, June.
    13. Almeida, Marco Pollo & Paixão, Rafael S. & Ramos, Pedro L. & Tomazella, Vera & Louzada, Francisco & Ehlers, Ricardo S., 2020. "Bayesian non-parametric frailty model for dependent competing risks in a repairable systems framework," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    14. Lee, Yoonseok & Phillips, Peter C.B., 2015. "Model selection in the presence of incidental parameters," Journal of Econometrics, Elsevier, vol. 188(2), pages 474-489.
    15. Jere Behrman & Robin Sickles & Paul Taubman, 1990. "Age-Specific Death Rates With Tobacco Smoking and Occupational Activity: Sensitivity to Sample Length, Functional Form, and Unobserved Frailty," Demography, Springer;Population Association of America (PAA), vol. 27(2), pages 267-284, May.
    16. Bartolucci, Francesco & Bacci, Silvia & Pigini, Claudia, 2017. "Misspecification test for random effects in generalized linear finite-mixture models for clustered binary and ordered data," Econometrics and Statistics, Elsevier, vol. 3(C), pages 112-131.
    17. Jaap H. Abbring & Gerard J. van den Berg & Pieter A. Gautier & A. Gijsbert C. van Lomwel & Jan C. van Ours & Christopher J. Ruhm, 1998. "Displaced Workers in the United States and the Netherlands," Tinbergen Institute Discussion Papers 98-084/3, Tinbergen Institute.
    18. Rezgar Zaki & Abbas Barabadi & Ali Nouri Qarahasanlou & A. H. S. Garmabaki, 2019. "A mixture frailty model for maintainability analysis of mechanical components: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1646-1653, December.
    19. Pan, Wei & Louis, Thomas A., 1999. "Two semi-parametric empirical Bayes estimators," Computational Statistics & Data Analysis, Elsevier, vol. 30(2), pages 185-196, April.
    20. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:203:y:2020:i:c:s0951832020305408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.