IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v215y2021ics095183202100394x.html
   My bibliography  Save this article

Extended Arithmetic Reduction of Age Models for the Failure Process of a Repairable System

Author

Listed:
  • Syamsundar, A.
  • Naikan, V.N.A.
  • Wu, Shaomin

Abstract

In the reliability literature, imperfect repair processes, a kind of stochastic processes, are used to model the failure process of a repairable system. An imperfect repair process with the arithmetic reduction of age (ARA) modifies the age of the system but suffers from the drawback that the intensity after repairs remains parallel to the initial intensity. To address this drawback, this paper proposes a failure process model with an extended arithmetic reduction of age. In this model, a geometric repair factor is introduced to extend the arithmetic reduction of the age process. This process is compared with existing monotonic and non-monotonic imperfect repair processes. It is found that the proposed model performs better, in terms of the corrected Akaike information criterion, at modelling failure data with trend than the existing models, based on three real datasets.

Suggested Citation

  • Syamsundar, A. & Naikan, V.N.A. & Wu, Shaomin, 2021. "Extended Arithmetic Reduction of Age Models for the Failure Process of a Repairable System," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:reensy:v:215:y:2021:i:c:s095183202100394x
    DOI: 10.1016/j.ress.2021.107875
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202100394X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toledo, Maria Luíza Guerra de & Freitas, Marta A. & Colosimo, Enrico A. & Gilardoni, Gustavo L., 2015. "ARA and ARI imperfect repair models: Estimation, goodness-of-fit and reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 107-115.
    2. Brenière, Léa & Doyen, Laurent & Bérenguer, Christophe, 2020. "Virtual age models with time-dependent covariates: A framework for simulation, parametric inference and quality of estimation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    3. Maxim Finkelstein & Ji Hwan Cha, 2021. "Virtual age, is it real? ‐ Discussing virtual age in reliability context," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 37(1), pages 3-16, January.
    4. Maxim Finkelstein, 2008. "Failure Rate Modelling for Reliability and Risk," Springer Series in Reliability Engineering, Springer, number 978-1-84800-986-8, January.
    5. Liu, Xingheng & Vatn, Jørn & Dijoux, Yann & Toftaker, Håkon, 2020. "Unobserved heterogeneity in stable imperfect repair models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Viertävä, Janne & Vaurio, Jussi K., 2009. "Testing statistical significance of trends in learning, ageing and safety indicators," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1128-1132.
    7. Liu, Xingheng & Finkelstein, Maxim & Vatn, Jørn & Dijoux, Yann, 2020. "Steady-state imperfect repair models," European Journal of Operational Research, Elsevier, vol. 286(2), pages 538-546.
    8. Shaomin Wu, 2018. "Doubly geometric processes and applications," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(1), pages 66-77, January.
    9. Doyen, Laurent & Gaudoin, Olivier & Syamsundar, Annamraju, 2017. "On geometric reduction of age or intensity models for imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 40-52.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Louzada, Francisco & Tomazella, Vera L.D. & Gonzatto, Oilson A. & Bochio, Gustavo & Milani, Eder A. & Ferreira, Paulo H. & Ramos, Pedro L., 2022. "Reliability assessment of repairable systems with series–parallel structure subjected to hierarchical competing risks under minimal repair regime," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Hu, Wei & Westerlund, Per & Hilber, Patrik & Chen, Chuanhai & Yang, Zhaojun, 2022. "A general model, estimation, and procedure for modeling recurrent failure process of high-voltage circuit breakers considering multivariate impacts," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    3. Chen, Xingyu & Yang, Qingyu & Wu, Xin, 2022. "Nonlinear degradation model and reliability analysis by integrating image covariate," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Jiang, Renyan & Li, Fengping & Xue, Wei & Cao, Yu & Zhang, Kunpeng, 2023. "A robust mean cumulative function estimator and its application to overhaul time optimization for a fleet of heterogeneous repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Ait Mokhtar, El Hassene & Laggoune, Radouane & Chateauneuf, Alaa, 2023. "Imperfect maintenance modeling and assessment of repairable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ait Mokhtar, El Hassene & Laggoune, Radouane & Chateauneuf, Alaa, 2023. "Imperfect maintenance modeling and assessment of repairable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Beutner, Eric, 2023. "A review of effective age models and associated non- and semiparametric methods," Econometrics and Statistics, Elsevier, vol. 28(C), pages 105-119.
    3. Yevkin, Alexander & Krivtsov, Vasiliy, 2020. "A generalized model for recurrent failures prediction," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Maxim Finkelstein & Ji Hwan Cha, 2021. "Rejoinder to “Virtual age, is it real?”," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 37(1), pages 45-52, January.
    5. Wenke Gao, 2020. "An extended geometric process and its application in replacement policy," Journal of Risk and Reliability, , vol. 234(1), pages 88-103, February.
    6. Brito, Éder S. & Tomazella, Vera L.D. & Ferreira, Paulo H., 2022. "Statistical modeling and reliability analysis of multiple repairable systems with dependent failure times under perfect repair," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Shang, Lijun & Liu, Baoliang & Qiu, Qingan & Yang, Li & Du, Yongjun, 2023. "Designing warranty and maintenance policies for products subject to random working cycles," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Maxim Finkelstein & Ji Hwan Cha, 2021. "On degradation-based imperfect repair and induced generalized renewal processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 1026-1045, December.
    9. Scheu, Matti Niclas & Kolios, Athanasios & Fischer, Tim & Brennan, Feargal, 2017. "Influence of statistical uncertainty of component reliability estimations on offshore wind farm availability," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 28-39.
    10. Brenière, Léa & Doyen, Laurent & Bérenguer, Christophe, 2023. "Optimization of preventive replacements dates and covariate inspections for repairable systems in varying environments," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1126-1141.
    11. Wu, Shaomin, 2019. "A failure process model with the exponential smoothing of intensity functions," European Journal of Operational Research, Elsevier, vol. 275(2), pages 502-513.
    12. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    13. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal Mission Abort Policy for Systems Operating in a Random Environment," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 795-803, April.
    14. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    15. Ji Hwan Cha & Maxim Finkelstein, 2019. "New failure and minimal repair processes for repairable systems in a random environment," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 522-536, May.
    16. Luo, Ming & Wu, Shaomin, 2019. "A comprehensive analysis of warranty claims and optimal policies," European Journal of Operational Research, Elsevier, vol. 276(1), pages 144-159.
    17. Maxim S. Finkelstein, 2008. "On systems with shared resources and optimal switching strategies," MPIDR Working Papers WP-2008-025, Max Planck Institute for Demographic Research, Rostock, Germany.
    18. Lillo Rodríguez, Rosa Elvira & Laniado Rodas, Henry, 2013. "Allocation policies of redundancies in two-parallel-series and two-series-parallel systems," DES - Working Papers. Statistics and Econometrics. WS ws132622, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2018. "Constructing a Markov process for modelling a reliability system under multiple failures and replacements," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 34-47.
    20. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:215:y:2021:i:c:s095183202100394x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.