IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v308y2023i2p581-604.html
   My bibliography  Save this article

A memetic algorithm for solving rich waste collection problems

Author

Listed:
  • Lavigne, Carolien
  • Inghels, Dirk
  • Dullaert, Wout
  • Dewil, Reginald

Abstract

Inspired by a real-life case in the Brussels Capital Region, Belgium, this paper provides a Memetic Algorithm with Sequential Split procedure (MASS) for solving a large variety of waste collection problems with multiple depots, a restricted vehicle fleet at each depot, multiple (intermediate) processing facilities, capacity restrictions per processing facility and partial pick-ups. MASS first generates satisfactory initial solutions which are feasible w.r.t. the shift duration and the vehicle capacity using a novel procedure in which (1) a giant tour is split into vehicle routes, (2) intermediate processing facilities are introduced and (3) waste pick-ups can be split further if profitable. Second, MASS improves these solutions through local search. New test instances are created, which are used to evaluate the performance of MASS’s components. We show that MASS provides high-quality feasible solutions by comparing MASS with an exact approach on a small example. Furthermore, MASS is tested on existing instances for the multiple-depot vehicle routing problem (MDVRP), (multi-depot) vehicle routing problem with intermediate facilities ((MD)VRPIF) and the multi-depot vehicle routing problem with inter-depot routes (MDVRPI). MASS shows competitive results for the MDVRP, the VRPIF and the MDVRPI. For the MDVRPIF, MASS obtains better results than those currently found in the literature. To assess its practical value, MASS is used to solve a real-life waste collection problem in the Brussels Capital Region in which alternative scenarios for municipal bio-waste collection and treatment are compared.

Suggested Citation

  • Lavigne, Carolien & Inghels, Dirk & Dullaert, Wout & Dewil, Reginald, 2023. "A memetic algorithm for solving rich waste collection problems," European Journal of Operational Research, Elsevier, vol. 308(2), pages 581-604.
  • Handle: RePEc:eee:ejores:v:308:y:2023:i:2:p:581-604
    DOI: 10.1016/j.ejor.2022.11.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722008815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.11.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markov, Iliya & Varone, Sacha & Bierlaire, Michel, 2016. "Integrating a heterogeneous fixed fleet and a flexible assignment of destination depots in the waste collection VRP with intermediate facilities," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 256-273.
    2. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    3. Tânia Rodrigues Pereira Ramos & Maria Isabel Gomes & Ana Paula Barbosa-Póvoa, 2020. "A new matheuristic approach for the multi-depot vehicle routing problem with inter-depot routes," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 75-110, March.
    4. Laura Delgado-Antequera & Manuel Laguna & Joaquín Pacheco & Rafael Caballero, 2020. "A bi-objective solution approach to a real-world waste collection problem," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(2), pages 183-194, February.
    5. Christos D. Tarantilis & Emmanouil E. Zachariadis & Chris T. Kiranoudis, 2008. "A Hybrid Guided Local Search for the Vehicle-Routing Problem with Intermediate Replenishment Facilities," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 154-168, February.
    6. Andrea Bortolotti & Stephan Kampelmann & Simon De Muynck & Anastasia Papangelou & Vanessa Zeller, 2019. "Conditions and concepts for interdisciplinary urban metabolism research - The case of an inter-project collaboration on biowaste in Brussels," ULB Institutional Repository 2013/292639, ULB -- Universite Libre de Bruxelles.
    7. Hamed Farrokhi-Asl & Ahmad Makui & Armin Jabbarzadeh & Farnaz Barzinpour, 2020. "Solving a multi-objective sustainable waste collection problem considering a new collection network," Operational Research, Springer, vol. 20(4), pages 1977-2015, December.
    8. A Gruler & C Fikar & A A Juan & P Hirsch & C Contreras-Bolton, 2017. "Supporting multi-depot and stochastic waste collection management in clustered urban areas via simulation–optimization," Journal of Simulation, Taylor & Francis Journals, vol. 11(1), pages 11-19, February.
    9. Crevier, Benoit & Cordeau, Jean-Francois & Laporte, Gilbert, 2007. "The multi-depot vehicle routing problem with inter-depot routes," European Journal of Operational Research, Elsevier, vol. 176(2), pages 756-773, January.
    10. U Derigs & B Li & U Vogel, 2010. "Local search-based metaheuristics for the split delivery vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(9), pages 1356-1364, September.
    11. Moshe Dror & Pierre Trudeau, 1990. "Split delivery routing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(3), pages 383-402, June.
    12. Teixeira, Joao & Antunes, Antonio Pais & de Sousa, Jorge Pinho, 2004. "Recyclable waste collection planning--a case study," European Journal of Operational Research, Elsevier, vol. 158(3), pages 543-554, November.
    13. Paolo Toth & Daniele Vigo, 2003. "The Granular Tabu Search and Its Application to the Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 15(4), pages 333-346, November.
    14. C. Archetti & M. G. Speranza & A. Hertz, 2006. "A Tabu Search Algorithm for the Split Delivery Vehicle Routing Problem," Transportation Science, INFORMS, vol. 40(1), pages 64-73, February.
    15. Moshe Dror & Pierre Trudeau, 1989. "Savings by Split Delivery Routing," Transportation Science, INFORMS, vol. 23(2), pages 141-145, May.
    16. Jeroen Beliën & Liesje De Boeck & Jonas Van Ackere, 2014. "Municipal Solid Waste Collection and Management Problems: A Literature Review," Transportation Science, INFORMS, vol. 48(1), pages 78-102, February.
    17. T R P Ramos & R C Oliveira, 2011. "Delimitation of service areas in reverse logistics networks with multiple depots," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1198-1210, July.
    18. Olli Bräysy & Wout Dullaert & Geir Hasle & David Mester & Michel Gendreau, 2008. "An Effective Multirestart Deterministic Annealing Metaheuristic for the Fleet Size and Mix Vehicle-Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 371-386, August.
    19. Ibrahim Muter & Jean-François Cordeau & Gilbert Laporte, 2014. "A Branch-and-Price Algorithm for the Multidepot Vehicle Routing Problem with Interdepot Routes," Transportation Science, INFORMS, vol. 48(3), pages 425-441, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    2. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    3. Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel & Barbosa-Póvoa, Ana Paula, 2014. "Planning a sustainable reverse logistics system: Balancing costs with environmental and social concerns," Omega, Elsevier, vol. 48(C), pages 60-74.
    4. Leonardo Berbotto & Sergio García & Francisco Nogales, 2014. "A Randomized Granular Tabu Search heuristic for the split delivery vehicle routing problem," Annals of Operations Research, Springer, vol. 222(1), pages 153-173, November.
    5. Tânia Rodrigues Pereira Ramos & Maria Isabel Gomes & Ana Paula Barbosa-Póvoa, 2020. "A new matheuristic approach for the multi-depot vehicle routing problem with inter-depot routes," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 75-110, March.
    6. Cortes, Juan David & Suzuki, Yoshinori, 2020. "Vehicle Routing with Shipment Consolidation," International Journal of Production Economics, Elsevier, vol. 227(C).
    7. Nicola Bianchessi & Stefan Irnich, 2016. "Branch-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows," Working Papers 1620, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Markov, Iliya & Varone, Sacha & Bierlaire, Michel, 2016. "Integrating a heterogeneous fixed fleet and a flexible assignment of destination depots in the waste collection VRP with intermediate facilities," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 256-273.
    9. Bortfeldt, Andreas & Yi, Junmin, 2020. "The Split Delivery Vehicle Routing Problem with three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 282(2), pages 545-558.
    10. Nicola Bianchessi & Stefan Irnich, 2019. "Branch-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 53(2), pages 442-462, March.
    11. Tu, Wei & Fang, Zhixiang & Li, Qingquan & Shaw, Shih-Lung & Chen, BiYu, 2014. "A bi-level Voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 84-97.
    12. Nguyen, Phuong Khanh & Crainic, Teodor Gabriel & Toulouse, Michel, 2013. "A tabu search for Time-dependent Multi-zone Multi-trip Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 231(1), pages 43-56.
    13. Zhuo Sun & Ni Yan & Yining Sun & Haobin Li, 2019. "Location-Routing Optimization with Split Demand for Customer Self-Pickup via Data Analysis and Heuristics Search," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-24, December.
    14. Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel & Barbosa-Póvoa, Ana Paula, 2014. "Assessing and improving management practices when planning packaging waste collection systems," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 116-129.
    15. Jianli Shi & Jin Zhang & Kun Wang & Xin Fang, 2018. "Particle Swarm Optimization for Split Delivery Vehicle Routing Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(02), pages 1-42, April.
    16. Berbotto, Leonardo & García, Sergio & Nogales, Francisco J., 2011. "A vehicle routing model with split delivery and stop nodes," DES - Working Papers. Statistics and Econometrics. WS ws110906, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Hiermann, Gerhard & Puchinger, Jakob & Ropke, Stefan & Hartl, Richard F., 2016. "The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 995-1018.
    18. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    19. Sohrabi, Somayeh & Ziarati, Koorush & Keshtkaran, Morteza, 2020. "A Greedy Randomized Adaptive Search Procedure for the Orienteering Problem with Hotel Selection," European Journal of Operational Research, Elsevier, vol. 283(2), pages 426-440.
    20. Han, Anthony Fu-Wha & Chu, Yu-Ching, 2016. "A multi-start heuristic approach for the split-delivery vehicle routing problem with minimum delivery amounts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 11-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:308:y:2023:i:2:p:581-604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.