IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v37y1990i3p383-402.html
   My bibliography  Save this article

Split delivery routing

Author

Listed:
  • Moshe Dror
  • Pierre Trudeau

Abstract

This article examines a relaxed version of the generic vehicle routing problem. In this version, a delivery to a demand point can be split between any number of vehicles. In spite of this relaxation the problem remains computationally hard. Since only small instances of the vehicle routing problem are known to be solved using exact methods, the vehicle route construction for this problem version is approached using heuristic rules. The main contribution of this article to the existing body of literature on vehicle routing issues in (a) is presenting a new vehicle routing problem amenable to practical applications, and (b) demonstrating the potential for cost savings over similar “traditional” vehicle routing when implementing the model and solutions presented here. The solution scheme allowing for split deliveries is compared with a solution in which no split deliveries are allowed. The comparison is conducted on six sets of 30 problems each for problems of size 75, 115, and 150 demand points (all together 540 problems). For very small demands (up to 10% of vehicle's capacity) no significant difference in solutions is evident for both solution schemes. For the other five problem sets for which point demand exceeds 10% of vehicle's capacity, very significant cost savings are realized when allowing split deliveries. The savings are significant both in the total distance and the number of vehicles required. The vehicles' routes constructed by our procedure tend to cover cohesive geographical zones and retain some properties of optimal solutions.

Suggested Citation

  • Moshe Dror & Pierre Trudeau, 1990. "Split delivery routing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(3), pages 383-402, June.
  • Handle: RePEc:wly:navres:v:37:y:1990:i:3:p:383-402
    DOI: 10.1002/nav.3800370304
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.3800370304
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.3800370304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dror, Moshe & Trudeau, Pierre, 1986. "Stochastic vehicle routing with modified savings algorithm," European Journal of Operational Research, Elsevier, vol. 23(2), pages 228-235, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Bianchessi & Michael Drexl & Stefan Irnich, 2019. "The Split Delivery Vehicle Routing Problem with Time Windows and Customer Inconvenience Constraints," Transportation Science, INFORMS, vol. 53(4), pages 1067-1084, March.
    2. Puca Huachi Vaz Penna & Anand Subramanian & Luiz Satoru Ochi & Thibaut Vidal & Christian Prins, 2019. "A hybrid heuristic for a broad class of vehicle routing problems with heterogeneous fleet," Annals of Operations Research, Springer, vol. 273(1), pages 5-74, February.
    3. Fatemeh Sabouhi & Ali Bozorgi-Amiri & Mohammad Moshref-Javadi & Mehdi Heydari, 2019. "An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: a case study," Annals of Operations Research, Springer, vol. 283(1), pages 643-677, December.
    4. Zhixing Luo & Hu Qin & Wenbin Zhu & Andrew Lim, 2017. "Branch and Price and Cut for the Split-Delivery Vehicle Routing Problem with Time Windows and Linear Weight-Related Cost," Transportation Science, INFORMS, vol. 51(2), pages 668-687, May.
    5. Burcu B. Keskin & İbrahim Çapar & Charles R. Sox & Nickolas K. Freeman, 2014. "An Integrated Load-Planning Algorithm for Outbound Logistics at Webb Wheel," Interfaces, INFORMS, vol. 44(5), pages 480-497, October.
    6. Bortfeldt, Andreas & Yi, Junmin, 2020. "The Split Delivery Vehicle Routing Problem with three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 282(2), pages 545-558.
    7. Saman Eskandarzadeh & Reza Tavakkoli-Moghaddam & Amir Azaron, 2009. "An extension of the relaxation algorithm for solving a special case of capacitated arc routing problems," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 214-234, February.
    8. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    9. Wolfinger, David & Salazar-González, Juan-José, 2021. "The Pickup and Delivery Problem with Split Loads and Transshipments: A Branch-and-Cut Solution Approach," European Journal of Operational Research, Elsevier, vol. 289(2), pages 470-484.
    10. Jianli Shi & Jin Zhang & Kun Wang & Xin Fang, 2018. "Particle Swarm Optimization for Split Delivery Vehicle Routing Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(02), pages 1-42, April.
    11. Kai Huang & Michael Xu, 2023. "Optimization Models for the Vehicle Routing Problem under Disruptions," Mathematics, MDPI, vol. 11(16), pages 1-21, August.
    12. Zhang, Yuankai & Sun, Lijun & Hu, Xiangpei & Zhao, Chen, 2019. "Order consolidation for the last-mile split delivery in online retailing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 309-327.
    13. Cortes, Juan David & Suzuki, Yoshinori, 2020. "Vehicle Routing with Shipment Consolidation," International Journal of Production Economics, Elsevier, vol. 227(C).
    14. Casazza, Marco & Ceselli, Alberto & Wolfler Calvo, Roberto, 2021. "A route decomposition approach for the single commodity Split Pickup and Split Delivery Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 897-911.
    15. Zongyi Chen & Mingkang Yang & Yijun Guo & Yu Liang & Yifan Ding & Li Wang, 2020. "The Split Delivery Vehicle Routing Problem with Three-Dimensional Loading and Time Windows Constraints," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    16. Lavigne, Carolien & Inghels, Dirk & Dullaert, Wout & Dewil, Reginald, 2023. "A memetic algorithm for solving rich waste collection problems," European Journal of Operational Research, Elsevier, vol. 308(2), pages 581-604.
    17. Zhixing Luo & Hu Qin & Wenbin Zhu & Andrew Lim, 2016. "Branch‐and‐price‐and‐cut for the manpower routing problem with synchronization constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 138-171, March.
    18. Tröster, Michael, 2017. "Bildung Einer Kostenfunktion Für Die Ausbringung Von Düngemitteln Unter Berücksichtigung Einer Tourenplanungsroutine Mit Teillieferungen (Sdvrp)," 57th Annual Conference, Weihenstephan, Germany, September 13-15, 2017 262155, German Association of Agricultural Economists (GEWISOLA).
    19. Leonardo Berbotto & Sergio García & Francisco Nogales, 2014. "A Randomized Granular Tabu Search heuristic for the split delivery vehicle routing problem," Annals of Operations Research, Springer, vol. 222(1), pages 153-173, November.
    20. Daqing Wu & Chenxiang Wu, 2022. "Research on the Time-Dependent Split Delivery Green Vehicle Routing Problem for Fresh Agricultural Products with Multiple Time Windows," Agriculture, MDPI, vol. 12(6), pages 1-28, May.
    21. Yugang Yu & Chengbin Chu & Haoxun Chen & Feng Chu, 2012. "Large scale stochastic inventory routing problems with split delivery and service level constraints," Annals of Operations Research, Springer, vol. 197(1), pages 135-158, August.
    22. Li, Jiliu & Qin, Hu & Baldacci, Roberto & Zhu, Wenbin, 2020. "Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    23. Nicola Bianchessi & Stefan Irnich, 2019. "Branch-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 53(2), pages 442-462, March.
    24. Rui Xu & Yumiao Huang & Wei Xiao, 2023. "A Two-Level Variable Neighborhood Descent for a Split Delivery Clustered Vehicle Routing Problem with Soft Cluster Conflicts and Customer-Related Costs," Sustainability, MDPI, vol. 15(9), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    2. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    3. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A hybrid recourse policy for the vehicle routing problem with stochastic demands," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 269-298, September.
    4. A A Juan & J Faulin & J Jorba & D Riera & D Masip & B Barrios, 2011. "On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1085-1097, June.
    5. Markov, Iliya & Bierlaire, Michel & Cordeau, Jean-François & Maknoon, Yousef & Varone, Sacha, 2018. "A unified framework for rich routing problems with stochastic demands," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 213-240.
    6. Salavati-Khoshghalb, Majid & Gendreau, Michel & Jabali, Ola & Rei, Walter, 2019. "An exact algorithm to solve the vehicle routing problem with stochastic demands under an optimal restocking policy," European Journal of Operational Research, Elsevier, vol. 273(1), pages 175-189.
    7. Jian Yang & Patrick Jaillet & Hani Mahmassani, 2004. "Real-Time Multivehicle Truckload Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 38(2), pages 135-148, May.
    8. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A Rule-Based Recourse for the Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 53(5), pages 1334-1353, September.
    9. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2010. "The Vehicle Routing Problem with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 44(4), pages 474-492, November.
    10. Krishna Chepuri & Tito Homem-de-Mello, 2005. "Solving the Vehicle Routing Problem with Stochastic Demands using the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 153-181, February.
    11. Gendreau, Michel & Laporte, Gilbert & Seguin, Rene, 1996. "Stochastic vehicle routing," European Journal of Operational Research, Elsevier, vol. 88(1), pages 3-12, January.
    12. Bertsimas, Dimitris. & Jaillet, Patrick. & Odoni, Amedeo R., 1989. "A priori optimization," Working papers 3059-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    13. Tan, K.C. & Cheong, C.Y. & Goh, C.K., 2007. "Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation," European Journal of Operational Research, Elsevier, vol. 177(2), pages 813-839, March.
    14. Jorge E. Mendoza & Bruno Castanier & Christelle Guéret & Andrés L. Medaglia & Nubia Velasco, 2011. "Constructive Heuristics for the Multicompartment Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 45(3), pages 346-363, August.
    15. Astrid S. Kenyon & David P. Morton, 2003. "Stochastic Vehicle Routing with Random Travel Times," Transportation Science, INFORMS, vol. 37(1), pages 69-82, February.
    16. Chrysanthos E. Gounaris & Wolfram Wiesemann & Christodoulos A. Floudas, 2013. "The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty," Operations Research, INFORMS, vol. 61(3), pages 677-693, June.
    17. Bertsimas, Dimitris, 1988. "The probabilistic vehicle routing problem," Working papers 2067-88., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    18. Florio, Alexandre M. & Hartl, Richard F. & Minner, Stefan, 2020. "Optimal a priori tour and restocking policy for the single-vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 285(1), pages 172-182.
    19. Gilbert Laporte & FranÇois V. Louveaux & Luc van Hamme, 2002. "An Integer L -Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 50(3), pages 415-423, June.
    20. Luo, Zhixing & Qin, Hu & Zhang, Dezhi & Lim, Andrew, 2016. "Adaptive large neighborhood search heuristics for the vehicle routing problem with stochastic demands and weight-related cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 69-89.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:37:y:1990:i:3:p:383-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.