IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v297y2022i1p325-337.html
   My bibliography  Save this article

Optimal dynamic longevity hedge with basis risk

Author

Listed:
  • Tan, Ken Seng
  • Weng, Chengguo
  • Zhang, Jinggong

Abstract

This paper proposes an optimal dynamic strategy for hedging longevity risk in a discrete-time setting. Our proposed hedging strategy relies on standardized mortality-linked securities and minimizes the variance of the hedging error as induced by the population basis risk. While the formulation of our proposed hedging strategy is quite general, we use a stylized pension plan, together with a specified “yearly rollingǥ trading strategy involving q-forwards and a specified stochastic mortality model, to illustrate our proposed strategy. Under these specifications, we show that the resulting hedging problem can be formulated as a stochastic optimal control framework and that a semi-analytic solution can be derived through an extended Bellman equation. Extensive Monte Carlo studies are conducted to highlight the effectiveness of our proposed hedging strategy. We also consider a scheme to approximate the semi-analytic solution in order to reduce the computational time significantly while still retaining its hedge effectiveness. We benchmark our strategy against the “delta” hedging strategy as well as its robustness to q-forwards maturity, reference age, interest rate, and stochastic mortality models. The proposed strategy has many appealing features, including its discrete-time setting which is consistent with market practice and hence conducive to practical implementation, and its generality in that the underlying hedging principle can be applied to other standardized mortality-linked securities and other stochastic models.

Suggested Citation

  • Tan, Ken Seng & Weng, Chengguo & Zhang, Jinggong, 2022. "Optimal dynamic longevity hedge with basis risk," European Journal of Operational Research, Elsevier, vol. 297(1), pages 325-337.
  • Handle: RePEc:eee:ejores:v:297:y:2022:i:1:p:325-337
    DOI: 10.1016/j.ejor.2021.05.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721004963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.05.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tat Wing Wong & Mei Choi Chiu & Hoi Ying Wong, 2017. "Managing Mortality Risk With Longevity Bonds When Mortality Rates Are Cointegrated," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 987-1023, September.
    2. Ngai, Andrew & Sherris, Michael, 2011. "Longevity risk management for life and variable annuities: The effectiveness of static hedging using longevity bonds and derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 100-114, July.
    3. Recchioni, M.C. & Sun, Y., 2016. "An explicitly solvable Heston model with stochastic interest rate," European Journal of Operational Research, Elsevier, vol. 249(1), pages 359-377.
    4. Tomas Björk & Agatha Murgoci, 2014. "A theory of Markovian time-inconsistent stochastic control in discrete time," Finance and Stochastics, Springer, vol. 18(3), pages 545-592, July.
    5. David Blake & Tom Boardman & Andrew Cairns, 2014. "Sharing Longevity Risk: Why Governments Should Issue Longevity Bonds," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 258-277.
    6. Rui Zhou & Johnny Siu-Hang Li & Ken Seng Tan, 2013. "Pricing Standardized Mortality Securitizations: A Two-Population Model With Transitory Jump Effects," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 733-774, September.
    7. Biagini, Francesca & Rheinländer, Thorsten & Widenmann, Jan, 2013. "Hedging Mortality Claims With Longevity Bonds," ASTIN Bulletin, Cambridge University Press, vol. 43(2), pages 123-157, May.
    8. David Blake, 2018. "Longevity: a new asset class," Journal of Asset Management, Palgrave Macmillan, vol. 19(5), pages 278-300, September.
    9. Yijia Lin & Ken Tan & Ruilin Tian & Jifeng Yu, 2014. "Downside Risk Management of a Defined Benefit Plan Considering Longevity Basis Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 68-86.
    10. Dahl, Mikkel & Moller, Thomas, 2006. "Valuation and hedging of life insurance liabilities with systematic mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 193-217, October.
    11. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2012. "Stochastic pension funding when the benefit and the risky asset follow jump diffusion processes," European Journal of Operational Research, Elsevier, vol. 220(2), pages 404-413.
    12. Aivaliotis, Georgios & Palczewski, Jan, 2014. "Investment strategies and compensation of a mean–variance optimizing fund manager," European Journal of Operational Research, Elsevier, vol. 234(2), pages 561-570.
    13. Yao, Haixiang & Li, Zhongfei & Li, Duan, 2016. "Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability," European Journal of Operational Research, Elsevier, vol. 252(3), pages 837-851.
    14. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    15. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    16. Andrew J.G. Cairns & Kevin Dowd & David Blake & Guy D. Coughlan, 2014. "Longevity hedge effectiveness: a decomposition," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 217-235, February.
    17. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    18. Coughlan, Guy & Khalaf-Allah, Marwa & Ye, Yijing & Kumar, Sumit & Cairns, Andrew & Blake, David & Dowd, Kevin, 2011. "Longevity hedging 101: A framework for longevity basis risk analysis and hedge effectiveness," MPRA Paper 35743, University Library of Munich, Germany.
    19. Liu, Haibo & Tang, Qihe & Yuan, Zhongyi, 2021. "Indifference pricing of insurance-linked securities in a multi-period model," European Journal of Operational Research, Elsevier, vol. 289(2), pages 793-805.
    20. Wong, Tat Wing & Chiu, Mei Choi & Wong, Hoi Ying, 2014. "Time-consistent mean–variance hedging of longevity risk: Effect of cointegration," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 56-67.
    21. Li, Jackie & Li, Johnny Siu-Hang & Tan, Chong It & Tickle, Leonie, 2019. "Assessing basis risk in index-based longevity swap transactions," Annals of Actuarial Science, Cambridge University Press, vol. 13(1), pages 166-197, March.
    22. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Longevity risk in portfolios of pension annuities," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 505-519, April.
    23. Li, Johnny Siu-Hang & Luo, Ancheng, 2012. "Key Q-Duration: A Framework for Hedging Longevity Risk," ASTIN Bulletin, Cambridge University Press, vol. 42(2), pages 413-452, November.
    24. Lioui, Abraham & Poncet, Patrice, 2016. "Understanding dynamic mean variance asset allocation," European Journal of Operational Research, Elsevier, vol. 254(1), pages 320-337.
    25. Luciano, Elisa & Regis, Luca & Vigna, Elena, 2012. "Delta–Gamma hedging of mortality and interest rate risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 402-412.
    26. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    27. Sharon S. Yang & Hong‐Chih Huang & Yu‐Yun Yeh, 2019. "Optimal Longevity Hedging Framework for Insurance Companies Considering Basis and Mispricing Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 86(3), pages 783-805, September.
    28. Guy Coughlan & Marwa Khalaf-Allah & Yijing Ye & Sumit Kumar & Andrew Cairns & David Blake & Kevin Dowd, 2011. "Longevity Hedging 101," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 150-176.
    29. Zhou, Kenneth Q. & Li, Johnny Siu-Hang, 2019. "Delta-hedging longevity risk under the M7–M5 model: The impact of cohort effect uncertainty and population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 1-21.
    30. Johnny Li & Mary Hardy, 2011. "Measuring Basis Risk in Longevity Hedges," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 177-200.
    31. Andrew J. G. Cairns, 2013. "Robust Hedging of Longevity Risk," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 621-648, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 301-319.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. Liu, Yanxin & Li, Johnny Siu-Hang, 2018. "A strategy for hedging risks associated with period and cohort effects using q-forwards," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 267-285.
    5. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    6. Börger, Matthias & Freimann, Arne & Ruß, Jochen, 2021. "A combined analysis of hedge effectiveness and capital efficiency in longevity hedging," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 309-326.
    7. Zhou, Kenneth Q. & Li, Johnny Siu-Hang, 2019. "Delta-hedging longevity risk under the M7–M5 model: The impact of cohort effect uncertainty and population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 1-21.
    8. Selin Ozen & c{S}ule c{S}ahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Papers 2101.06690, arXiv.org.
    9. Selin Özen & Şule Şahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Risks, MDPI, vol. 9(2), pages 1-19, February.
    10. Clemente De Rosa & Elisa Luciano & Luca Regis, 2017. "Basis risk in static versus dynamic longevity-risk hedging," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2017(4), pages 343-365, April.
    11. Bosserhoff, Frank & Stadje, Mitja, 2021. "Time-consistent mean-variance investment with unit linked life insurance contracts in a jump-diffusion setting," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 130-146.
    12. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.
    13. Uditha Balasooriya & Johnny Siu-Hang Li & Jackie Li, 2020. "The Impact of Model Uncertainty on Index-Based Longevity Hedging and Measurement of Longevity Basis Risk," Risks, MDPI, vol. 8(3), pages 1-27, August.
    14. Zhang, Jingong & Tan, Ken Seng & Weng, Chengguo, 2017. "Optimal hedging with basis risk under mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 1-15.
    15. Man Chung Fung & Katja Ignatieva & Michael Sherris, 2019. "Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives," Risks, MDPI, vol. 7(1), pages 1-25, January.
    16. Andrew J.G. Cairns & Malene Kallestrup-Lamb & Carsten P.T. Rosenskjold & David Blake & Kevin Dowd, 2016. "Modelling Socio-Economic Differences in the Mortality of Danish Males Using a New Affluence Index," CREATES Research Papers 2016-14, Department of Economics and Business Economics, Aarhus University.
    17. Li, Jackie & Haberman, Steven, 2015. "On the effectiveness of natural hedging for insurance companies and pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 286-297.
    18. Man Chung Fung & Katja Ignatieva & Michael Sherris, 2015. "Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives," Papers 1508.00090, arXiv.org.
    19. M. Martin Boyer & Lars Stentoft, 2017. "Yes We Can (Price Derivatives on Survivor Indices)," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 20(1), pages 37-62, March.
    20. Tan, Chong It & Li, Jackie & Li, Johnny Siu-Hang & Balasooriya, Uditha, 2014. "Parametric mortality indexes: From index construction to hedging strategies," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 285-299.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:297:y:2022:i:1:p:325-337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.