IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v296y2022i1p289-303.html
   My bibliography  Save this article

Integrating Data Envelopment Analysis into radiotherapy treatment planning for head and neck cancer patients

Author

Listed:
  • Raith, Andrea
  • Ehrgott, Matthias
  • Fauzi, Fariza
  • Lin, Kuan-Min
  • Macann, Andrew
  • Rouse, Paul
  • Simpson, John

Abstract

Radiotherapy treatment (RT) irradiates a patient's tumour volume while minimising damage to healthy tissue and surrounding critical organs at risk (OAR). In the conventional RT planning process, the RT planner has to iteratively adjust either the planning objectives (tumour or OAR dose levels) or the weights of the planning objectives until an acceptable plan is obtained that satisfies the minimum requirements. At the end of this iterative process, it remains unknown whether this plan is the best that can be obtained for the patient. The oncologist reviews each plan and decides to either treat using this plan or request further plan development, which may or may not lead to an actual improvement of the reviewed plan.

Suggested Citation

  • Raith, Andrea & Ehrgott, Matthias & Fauzi, Fariza & Lin, Kuan-Min & Macann, Andrew & Rouse, Paul & Simpson, John, 2022. "Integrating Data Envelopment Analysis into radiotherapy treatment planning for head and neck cancer patients," European Journal of Operational Research, Elsevier, vol. 296(1), pages 289-303.
  • Handle: RePEc:eee:ejores:v:296:y:2022:i:1:p:289-303
    DOI: 10.1016/j.ejor.2021.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721003192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), 2011. "Handbook on Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6151-8, December.
    2. Ruggiero, John, 1998. "Non-discretionary inputs in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 111(3), pages 461-469, December.
    3. Andrea Raith & Paul Rouse & Lawrence M. Seiford, 2019. "Benchmarking Using Data Envelopment Analysis: Application to Stores of a Post and Banking Business," International Series in Operations Research & Management Science, in: Sandra Huber & Martin Josef Geiger & Adiel Teixeira de Almeida (ed.), Multiple Criteria Decision Making and Aiding, pages 1-39, Springer.
    4. Breedveld, Sebastiaan & Craft, David & van Haveren, Rens & Heijmen, Ben, 2019. "Multi-criteria optimization and decision-making in radiotherapy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 1-19.
    5. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2012. "How to measure the impact of environmental factors in a nonparametric production model," European Journal of Operational Research, Elsevier, vol. 223(3), pages 818-833.
    6. Subhash C. Ray, 1991. "Resource-Use Efficiency in Public Schools: A Study of Connecticut Data," Management Science, INFORMS, vol. 37(12), pages 1620-1628, December.
    7. Harold Fried & Shelton Schmidt & Suthathip Yaisawarng, 1999. "Incorporating the Operating Environment Into a Nonparametric Measure of Technical Efficiency," Journal of Productivity Analysis, Springer, vol. 12(3), pages 249-267, November.
    8. Diogo Cunha Ferreira & Rui Cunha Marques, 2020. "A step forward on order-α robust nonparametric method: inclusion of weight restrictions, convexity and non-variable returns to scale," Operational Research, Springer, vol. 20(2), pages 1011-1046, June.
    9. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    10. H. Fried & C. Lovell & S. Schmidt & S. Yaisawarng, 2002. "Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 17(1), pages 157-174, January.
    11. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    12. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    13. Emma Stubington & Matthias Ehrgott & Glyn Shentall & Omid Nohadani, 2019. "Evaluating the Quality of Radiotherapy Treatment Plans for Prostate Cancer," International Series in Operations Research & Management Science, in: Sandra Huber & Martin Josef Geiger & Adiel Teixeira de Almeida (ed.), Multiple Criteria Decision Making and Aiding, pages 41-66, Springer.
    14. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    15. Yasar A. Ozcan, 2014. "Evaluation of Performance in Health Care," International Series in Operations Research & Management Science, in: Health Care Benchmarking and Performance Evaluation, edition 2, chapter 0, pages 3-14, Springer.
    16. Aragon, Y. & Daouia, A. & Thomas-Agnan, C., 2005. "Nonparametric Frontier Estimation: A Conditional Quantile-Based Approach," Econometric Theory, Cambridge University Press, vol. 21(2), pages 358-389, April.
    17. Ferreira, D.C. & Marques, R.C. & Nunes, A.M., 2018. "Economies of scope in the health sector: The case of Portuguese hospitals," European Journal of Operational Research, Elsevier, vol. 266(2), pages 716-735.
    18. Ray, Subhash C., 1988. "Data envelopment analysis, nondiscretionary inputs and efficiency: an alternative interpretation," Socio-Economic Planning Sciences, Elsevier, vol. 22(4), pages 167-176.
    19. Jos Blank & Vivian Valdmanis, 2010. "Environmental factors and productivity on Dutch hospitals: a semi-parametric approach," Health Care Management Science, Springer, vol. 13(1), pages 27-34, March.
    20. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    21. H. W. Hamacher & K. H. Küfer, 1999. "Inverse Radiation Therapy Planning: A Multiple Objective Optimisation Approach," World Scientific Book Chapters, in: V De Angelis & N Ricciardi & G Storchi (ed.), Monitoring, Evaluating, Planning Health Services, chapter 16, pages 177-189, World Scientific Publishing Co. Pte. Ltd..
    22. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    23. Sérgio P. Santos & Carla A. F. Amado, 2012. "Using data envelopment analysis for formative evaluation of radiotherapy services: An exploratory study," International Series in Operations Research & Management Science, in: Elena Tànfani & Angela Testi (ed.), Advanced Decision Making Methods Applied to Health Care, chapter 0, pages 173-190, Springer.
    24. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    25. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    26. Yasar A. Ozcan, 2014. "Health Care Benchmarking and Performance Evaluation," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4899-7472-3, December.
    27. Rajiv D. Banker & Richard C. Morey, 1986. "The Use of Categorical Variables in Data Envelopment Analysis," Management Science, INFORMS, vol. 32(12), pages 1613-1627, December.
    28. Matthias Ehrgott & Çiğdem Güler & Horst Hamacher & Lizhen Shao, 2010. "Mathematical optimization in intensity modulated radiation therapy," Annals of Operations Research, Springer, vol. 175(1), pages 309-365, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Freitas, Juliana Campos & Cantane, Daniela Renata & Rocha, Humberto & Dias, Joana, 2024. "A multiobjective beam angle optimization framework for intensity-modulated radiation therapy," European Journal of Operational Research, Elsevier, vol. 318(1), pages 286-296.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    2. Huguenin, Jean-Marc, 2015. "Adjusting for the environment in DEA: A comparison of alternative models based on empirical data," Socio-Economic Planning Sciences, Elsevier, vol. 52(C), pages 41-54.
    3. Rita Bastião & Nuno de Sousa Pereira, 2020. "Performance in the Delivery of Primary Health Care Services: A Longitudinal Analysis," CEF.UP Working Papers 2002, Universidade do Porto, Faculdade de Economia do Porto.
    4. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    5. Abdel Latef Anouze & Imad Bou-Hamad, 2021. "Inefficiency source tracking: evidence from data envelopment analysis and random forests," Annals of Operations Research, Springer, vol. 306(1), pages 273-293, November.
    6. Ferreira, D.C. & Marques, R.C., 2019. "Do quality and access to hospital services impact on their technical efficiency?," Omega, Elsevier, vol. 86(C), pages 218-236.
    7. Bjørndal, Endre & Bjørndal, Mette & Cullmann, Astrid & Nieswand, Maria, 2018. "Finding the right yardstick: Regulation of electricity networks under heterogeneous environments," European Journal of Operational Research, Elsevier, vol. 265(2), pages 710-722.
    8. José Manuel Cordero & Cristina Polo & Daniel Santín & Gabriela Sicilia, 2016. "Monte-Carlo Comparison of Conditional Nonparametric Methods and Traditional Approaches to Include Exogenous Variables," Pacific Economic Review, Wiley Blackwell, vol. 21(4), pages 483-497, October.
    9. Diogo Cunha Ferreira & Rui Cunha Marques, 2020. "A step forward on order-α robust nonparametric method: inclusion of weight restrictions, convexity and non-variable returns to scale," Operational Research, Springer, vol. 20(2), pages 1011-1046, June.
    10. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    11. Cordero Ferrera, Jose Manuel & Alonso Morán, Edurne & Nuño Solís, Roberto & Orueta, Juan F. & Souto Arce, Regina, 2013. "Efficiency assessment of primary care providers: A conditional nonparametric approach," MPRA Paper 51926, University Library of Munich, Germany.
    12. Syrjanen, Mikko J., 2004. "Non-discretionary and discretionary factors and scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 158(1), pages 20-33, October.
    13. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    14. Paolo Liberati & Raffaele Lagravinese & Giuliano Resce, 2017. "How Does Economic Social And Cultural Status Affect The Efficiency Of Educational Attainments? A Comparative Analysis On Pisa Results," Departmental Working Papers of Economics - University 'Roma Tre' 0217, Department of Economics - University Roma Tre.
    15. Castro Massimo Finocchiaro & Guccio Calogero, 2015. "Bottlenecks or Inefficiency? An Assessment of First Instance Italian Courts’ Performance," Review of Law & Economics, De Gruyter, vol. 11(2), pages 317-354, July.
    16. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    17. da Silva, Aline Veronese & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & do Carmo, Gabriela Miranda, 2019. "A close look at second stage data envelopment analysis using compound error models and the Tobit model," Socio-Economic Planning Sciences, Elsevier, vol. 65(C), pages 111-126.
    18. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    19. Mansour Zarrin & Jan Schoenfelder & Jens O. Brunner, 2022. "Homogeneity and Best Practice Analyses in Hospital Performance Management: An Analytical Framework," Health Care Management Science, Springer, vol. 25(3), pages 406-425, September.
    20. Alireza Amirteimoori & Mahnaz Maghbouli & Sohrab Kordrostami, 2016. "Multi-dimensional Nondiscretionary Factors in Data Envelopment Analysis: A Slack-Based Measure," Computational Economics, Springer;Society for Computational Economics, vol. 48(2), pages 211-223, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:296:y:2022:i:1:p:289-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.