IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v238y2014i3p711-723.html
   My bibliography  Save this article

Single-commodity robust network design problem: Complexity, instances and heuristic solutions

Author

Listed:
  • Álvarez-Miranda, Eduardo
  • Cacchiani, Valentina
  • Lodi, Andrea
  • Parriani, Tiziano
  • Schmidt, Daniel R.

Abstract

We study a single-commodity Robust Network Design problem (RND) in which an undirected graph with edge costs is given together with a discrete set of balance matrices, representing different supply/demand scenarios. In each scenario, a subset of the nodes is exchanging flow. The goal is to determine the minimum cost installation of capacities on the edges such that the flow exchange is feasible for every scenario. Previously conducted computational investigations on the problem motivated the study of the complexity of some special cases and we present complexity results on them, including hypercubes. In turn, these results lead to the definition of new instances (random graphs with {−1,0,1} balances) that are computationally hard for the natural flow formulation. These instances are then solved by means of a new heuristic algorithm for RND, which consists of three phases. In the first phase the graph representing the network is reduced by heuristically deleting a subset of the arcs, and a feasible solution is built. The second phase consists of a neighborhood search on the reduced graph based on a Mixed-Integer (Linear) Programming (MIP) flow model. Finally, the third phase applies a proximity search approach to further improve the solution, taking into account the original graph. The heuristic is tested on the new instances, and the comparison with the solutions obtained by Cplex on a natural flow formulation shows the effectiveness of the proposed method.

Suggested Citation

  • Álvarez-Miranda, Eduardo & Cacchiani, Valentina & Lodi, Andrea & Parriani, Tiziano & Schmidt, Daniel R., 2014. "Single-commodity robust network design problem: Complexity, instances and heuristic solutions," European Journal of Operational Research, Elsevier, vol. 238(3), pages 711-723.
  • Handle: RePEc:eee:ejores:v:238:y:2014:i:3:p:711-723
    DOI: 10.1016/j.ejor.2014.04.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171400349X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.04.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Sara Mattia, 2013. "The robust network loading problem with dynamic routing," Computational Optimization and Applications, Springer, vol. 54(3), pages 619-643, April.
    3. Edward Rothberg, 2007. "An Evolutionary Algorithm for Polishing Mixed Integer Programming Solutions," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 534-541, November.
    4. ORTEGA , Francisco & WOLSEY, Laurence A., 2003. "A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-charge network flow problem," LIDAM Reprints CORE 1611, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siqian Shen & Mingdi You & Yintai Ma, 2017. "Single‐commodity stochastic network design under demand and topological uncertainties with insufficient data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(2), pages 154-173, March.
    2. Ashwin Arulselvan & Mohsen Rezapour, 2017. "Exact Approaches for Designing Multifacility Buy-at-Bulk Networks," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 597-611, November.
    3. Filipe Rodrigues & Agostinho Agra & Lars Magnus Hvattum & Cristina Requejo, 2021. "Weighted proximity search," Journal of Heuristics, Springer, vol. 27(3), pages 459-496, June.
    4. Matthews, Logan R. & Gounaris, Chrysanthos E. & Kevrekidis, Ioannis G., 2019. "Designing networks with resiliency to edge failures using two-stage robust optimization," European Journal of Operational Research, Elsevier, vol. 279(3), pages 704-720.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Mattia & Michael Poss, 2018. "A comparison of different routing schemes for the robust network loading problem: polyhedral results and computation," Computational Optimization and Applications, Springer, vol. 69(3), pages 753-800, April.
    2. Christian Biefel & Martina Kuchlbauer & Frauke Liers & Lisa Waldmüller, 2025. "Robust static and dynamic maximum flows," Journal of Combinatorial Optimization, Springer, vol. 49(5), pages 1-42, July.
    3. Siqian Shen & Mingdi You & Yintai Ma, 2017. "Single‐commodity stochastic network design under demand and topological uncertainties with insufficient data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(2), pages 154-173, March.
    4. Artur Alves Pessoa & Michael Poss, 2015. "Robust Network Design with Uncertain Outsourcing Cost," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 507-524, August.
    5. Josette Ayoub & Michael Poss, 2016. "Decomposition for adjustable robust linear optimization subject to uncertainty polytope," Computational Management Science, Springer, vol. 13(2), pages 219-239, April.
    6. Dimitris Bertsimas & Ebrahim Nasrabadi & Sebastian Stiller, 2013. "Robust and Adaptive Network Flows," Operations Research, INFORMS, vol. 61(5), pages 1218-1242, October.
    7. Christina Büsing & Arie M. C. A. Koster & Sabrina Schmitz, 2022. "Robust minimum cost flow problem under consistent flow constraints," Annals of Operations Research, Springer, vol. 312(2), pages 691-722, May.
    8. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    9. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    10. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    11. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    12. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    13. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    14. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    15. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    16. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    17. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    18. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    19. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    20. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:238:y:2014:i:3:p:711-723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.