IDEAS home Printed from
   My bibliography  Save this article

A branch-and-cut algorithm for the discrete (r∣p)-centroid problem


  • Roboredo, Marcos Costa
  • Pessoa, Artur Alves


The environment of the (r∣p)-centroid problem is composed of two noncooperative firms, a leader and a follower, competing to serve the demand of customers from a given market. The demand of each customer is totally served by a facility of the leader or follower according to a customer choice rule. The goal of both the leader and the follower is to maximize its own market share. The (r∣p)-centroid problem consists of deciding where the leader should place p facilities knowing that the follower will react by placing r facilities. The discrete version of the problem is a ∑2p-hard one, where both the applicant facilities and the customers are nodes on a graph. In spite of it, we present an integer programming formulation with polynomially many variables and exponentially many constraints. Moreover, we report several experiments with different number of customers and applicant facilities and different values of p and r. Our results show that our method requires less computational time than the two exact algorithms found in the literature, being able to optimally solve 29 previously open instances with up to 100 customers, 100 applicant facilities and p=r=15.

Suggested Citation

  • Roboredo, Marcos Costa & Pessoa, Artur Alves, 2013. "A branch-and-cut algorithm for the discrete (r∣p)-centroid problem," European Journal of Operational Research, Elsevier, vol. 224(1), pages 101-109.
  • Handle: RePEc:eee:ejores:v:224:y:2013:i:1:p:101-109
    DOI: 10.1016/j.ejor.2012.07.042

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hakimi, S. Louis, 1983. "On locating new facilities in a competitive environment," European Journal of Operational Research, Elsevier, vol. 12(1), pages 29-35, January.
    2. Campos Rodrí­guez, Clara M. & Moreno Pérez, José A., 2008. "Multiple voting location problems," European Journal of Operational Research, Elsevier, vol. 191(2), pages 437-453, December.
    3. Eiselt, H. A. & Laporte, G., 1989. "Competitive spatial models," European Journal of Operational Research, Elsevier, vol. 39(3), pages 231-242, April.
    4. Noltemeier, H. & Spoerhase, J. & Wirth, H.-C., 2007. "Multiple voting location and single voting location on trees," European Journal of Operational Research, Elsevier, vol. 181(2), pages 654-667, September.
    5. Kress, Dominik & Pesch, Erwin, 2012. "Sequential competitive location on networks," European Journal of Operational Research, Elsevier, vol. 217(3), pages 483-499.
    6. Campos Rodriguez, Clara M. & Moreno Perez, Jose A., 2003. "Relaxation of the Condorcet and Simpson conditions in voting location," European Journal of Operational Research, Elsevier, vol. 145(3), pages 673-683, March.
    7. Eiselt, H. A. & Laporte, Gilbert, 1997. "Sequential location problems," European Journal of Operational Research, Elsevier, vol. 96(2), pages 217-231, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:ejores:v:265:y:2018:i:3:p:872-881 is not listed on IDEAS
    2. repec:spr:annopr:v:246:y:2016:i:1:d:10.1007_s10479-015-1793-9 is not listed on IDEAS
    3. Ekaterina Alekseeva & Yury Kochetov & Alexandr Plyasunov, 2015. "An exact method for the discrete $$(r|p)$$ ( r | p ) -centroid problem," Journal of Global Optimization, Springer, vol. 63(3), pages 445-460, November.
    4. Zhang, Ying & Snyder, Lawrence V. & Ralphs, Ted K. & Xue, Zhaojie, 2016. "The competitive facility location problem under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 453-473.
    5. Ivan Davydov & Yury Kochetov & Alexandr Plyasunov, 2014. "On the complexity of the (r|p)-centroid problem in the plane," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 614-623, July.
    6. repec:eee:ejores:v:262:y:2017:i:2:p:449-463 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:224:y:2013:i:1:p:101-109. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.