IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v201y2010i1p222-230.html
   My bibliography  Save this article

Valuing continuous-installment options

Author

Listed:
  • Kimura, Toshikazu

Abstract

Installment options are path-dependent contingent claims in which the premium is paid discretely or continuously in installments, instead of paying a lump sum at the time of purchase. This paper deals with valuing European continuous-installment options written on dividend-paying assets in the standard Black-Scholes-Merton framework. The valuation of installment options can be formulated as a free boundary problem, due to the flexibility of continuing or stopping to pay installments. On the basis of a PDE for the initial premium, we derive an integral representation for the initial premium, being expressed as a difference of the corresponding European vanilla value and the expected present value of installment payments along the optimal stopping boundary. Applying the Laplace transform approach to this PDE, we obtain explicit Laplace transforms of the initial premium as well as its Greeks, which include the transformed stopping boundary in a closed form. Abelian theorems of Laplace transforms enable us to characterize asymptotic behaviors of the stopping boundary close and at infinite time to expiry. We show that numerical inversion of these Laplace transforms works well for computing both the option value and the optimal stopping boundary.

Suggested Citation

  • Kimura, Toshikazu, 2010. "Valuing continuous-installment options," European Journal of Operational Research, Elsevier, vol. 201(1), pages 222-230, February.
  • Handle: RePEc:eee:ejores:v:201:y:2010:i:1:p:222-230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00075-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    2. Ben-Ameur, Hatem & Breton, Michele & Francois, Pascal, 2006. "A dynamic programming approach to price installment options," European Journal of Operational Research, Elsevier, vol. 169(2), pages 667-676, March.
    3. Majd, Saman & Pindyck, Robert S., 1987. "Time to build, option value, and investment decisions," Journal of Financial Economics, Elsevier, vol. 18(1), pages 7-27, March.
    4. Pierangelo Ciurlia & Ilir Roko, 2005. "Valuation of American Continuous-Installment Options," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 143-165, February.
    5. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.),Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    6. Griebsch, Susanne & Kühn, Christoph & Wystup, Uwe, 2007. "Instalment options: a closed-form solution and the limiting case," CPQF Working Paper Series 5, Frankfurt School of Finance and Management, Centre for Practical Quantitative Finance (CPQF).
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Carr, Peter, 1998. "Randomization and the American Put," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    9. Geske, Robert, 1979. "The valuation of compound options," Journal of Financial Economics, Elsevier, vol. 7(1), pages 63-81, March.
    10. M. H. A. Davis & W. Schachermayer & R. G. Tompkins, 2001. "Pricing, no-arbitrage bounds and robust hedging of instalment options," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 597-610.
    11. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    12. Ju, Nengjiu, 1998. "Pricing an American Option by Approximating Its Early Exercise Boundary as a Multipiece Exponential Function," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 627-646.
    13. Kimura, Toshikazu, 2008. "Valuing finite-lived Russian options," European Journal of Operational Research, Elsevier, vol. 189(2), pages 363-374, September.
    14. Geske, Robert, 1977. "The Valuation of Corporate Liabilities as Compound Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 541-552, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng Guohe & Xue Guangming, 2016. "Valuation of American Continuous-Installment Options Under the Constant Elasticity of Variance Model," Journal of Systems Science and Information, De Gruyter, vol. 4(2), pages 149-168, April.
    2. Jeon, Junkee & Kim, Geonwoo, 2019. "Pricing European continuous-installment strangle options," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:201:y:2010:i:1:p:222-230. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.