IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v200y2010i1p28-35.html
   My bibliography  Save this article

A branch and cut algorithm for the hierarchical network design problem

Author

Listed:
  • Obreque, Carlos
  • Donoso, Macarena
  • Gutiérrez, Gabriel
  • Marianov, Vladimir

Abstract

The Hierarchical Network Design Problem consists of locating a minimum cost bi-level network on a graph. The higher level sub-network is a path visiting two or more nodes. The lower level sub-network is a forest connecting the remaining nodes to the path. We optimally solve the problem using an ad hoc branch and cut procedure. Relaxed versions of a base model are solved using an optimization package and, if binary variables have fractional values or if some of the relaxed constraints are violated in the solution, cutting planes are added. Once no more cuts can be added, branch and bound is used. The method for finding valid cutting planes is presented. Finally, we use different available test instances to compare the procedure with the best known published optimal procedure, with good results. In none of the instances we needed to apply branch and bound, but only the cutting planes.

Suggested Citation

  • Obreque, Carlos & Donoso, Macarena & Gutiérrez, Gabriel & Marianov, Vladimir, 2010. "A branch and cut algorithm for the hierarchical network design problem," European Journal of Operational Research, Elsevier, vol. 200(1), pages 28-35, January.
  • Handle: RePEc:eee:ejores:v:200:y:2010:i:1:p:28-35
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)01058-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anantaram Balakrishnan & Thomas L. Magnanti & Prakash Mirchandani, 1994. "Modeling and Heuristic Worst-Case Performance Analysis of the Two-Level Network Design Problem," Management Science, INFORMS, vol. 40(7), pages 846-867, July.
    2. Anantaram Balakrishnan & Thomas L. Magnanti & Prakash Mirchandani, 1994. "A Dual-Based Algorithm for Multi-Level Network Design," Management Science, INFORMS, vol. 40(5), pages 567-581, May.
    3. Current, John & Pirkul, Hasan, 1991. "Theory and methodologyThe hierarchical network design problem with transshipment facilities," European Journal of Operational Research, Elsevier, vol. 51(3), pages 338-347, April.
    4. Hasan Pirkul & John Current & V. Nagarajan, 1991. "The Hierarchical Network Design Problem: A New Formulation and Solution Procedures," Transportation Science, INFORMS, vol. 25(3), pages 175-182, August.
    5. Sancho, N. G. F., 1995. "A suboptimal solution to a hierarchial network design problem using dynamic programming," European Journal of Operational Research, Elsevier, vol. 83(1), pages 237-244, May.
    6. Duin, Cees & Volgenant, Anton, 1989. "Reducing the hierarchical network design problem," European Journal of Operational Research, Elsevier, vol. 39(3), pages 332-344, April.
    7. Luis Gouveia & João Telhada, 2001. "An Augmented Arborescence Formulation for the Two-Level Network Design Problem," Annals of Operations Research, Springer, vol. 106(1), pages 47-61, September.
    8. Current, John R. & ReVelle, Charles S. & Cohon, Jared L., 1986. "The hierarchical network design problem," European Journal of Operational Research, Elsevier, vol. 27(1), pages 57-66, October.
    9. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    10. John R. Current, 1988. "The Design of a Hierarchical Transportation Network with Transshipment Facilities," Transportation Science, INFORMS, vol. 22(4), pages 270-277, November.
    11. Osman Alp & Erhan Erkut & Zvi Drezner, 2003. "An Efficient Genetic Algorithm for the p-Median Problem," Annals of Operations Research, Springer, vol. 122(1), pages 21-42, September.
    12. Prakash Mirchandani, 1996. "The Multi-Tier Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 8(3), pages 202-218, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).
    2. Bigotte, João F. & Krass, Dmitry & Antunes, António P. & Berman, Oded, 2010. "Integrated modeling of urban hierarchy and transportation network planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 506-522, August.
    3. Miyagawa, Masashi, 2011. "Hierarchical system of road networks with inward, outward, and through traffic," Journal of Transport Geography, Elsevier, vol. 19(4), pages 591-595.
    4. Masashi Miyagawa, 2014. "Optimal allocation of area in hierarchical road networks," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 617-630, September.
    5. Eduardo Álvarez-Miranda & Ivana Ljubić & S. Raghavan & Paolo Toth, 2015. "The Recoverable Robust Two-Level Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 1-19, February.
    6. Crainic, Teodor Gabriel & Gendron, Bernard & Akhavan Kazemzadeh, Mohammad Rahim, 2022. "A taxonomy of multilayer network design and a survey of transportation and telecommunication applications," European Journal of Operational Research, Elsevier, vol. 303(1), pages 1-13.
    7. Gollowitzer, Stefan & Gouveia, Luis & Ljubić, Ivana, 2013. "Enhanced formulations and branch-and-cut for the two level network design problem with transition facilities," European Journal of Operational Research, Elsevier, vol. 225(2), pages 211-222.
    8. Souza, Fernanda S.H. & Gendreau, Michel & Mateus, Geraldo R., 2014. "Branch-and-price algorithm for the Resilient Multi-level Hop-constrained Network Design," European Journal of Operational Research, Elsevier, vol. 233(1), pages 84-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gollowitzer, Stefan & Gouveia, Luis & Ljubić, Ivana, 2013. "Enhanced formulations and branch-and-cut for the two level network design problem with transition facilities," European Journal of Operational Research, Elsevier, vol. 225(2), pages 211-222.
    2. Eduardo Álvarez-Miranda & Ivana Ljubić & S. Raghavan & Paolo Toth, 2015. "The Recoverable Robust Two-Level Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 1-19, February.
    3. Masashi Miyagawa, 2014. "Optimal allocation of area in hierarchical road networks," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 617-630, September.
    4. Mesa, Juan A. & Brian Boffey, T., 1996. "A review of extensive facility location in networks," European Journal of Operational Research, Elsevier, vol. 95(3), pages 592-603, December.
    5. Masashi Miyagawa, 2009. "Optimal hierarchical system of a grid road network," Annals of Operations Research, Springer, vol. 172(1), pages 349-361, November.
    6. Souza, Fernanda S.H. & Gendreau, Michel & Mateus, Geraldo R., 2014. "Branch-and-price algorithm for the Resilient Multi-level Hop-constrained Network Design," European Journal of Operational Research, Elsevier, vol. 233(1), pages 84-93.
    7. Cruz, F. R. B. & Smith, J. MacGregor & Mateus, G. R., 1999. "Algorithms for a multi-level network optimization problem," European Journal of Operational Research, Elsevier, vol. 118(1), pages 164-180, October.
    8. Miyagawa, Masashi, 2011. "Hierarchical system of road networks with inward, outward, and through traffic," Journal of Transport Geography, Elsevier, vol. 19(4), pages 591-595.
    9. van de Leensel, R.L.J.M. & Flippo, O.E. & Koster, Arie M.C.A. & Kolen, A.W.J., 1996. "A dynamic programming algorithm for the local access network expansion problem," Research Memorandum 027, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    10. M-G Yoon & J Current, 2008. "The hub location and network design problem with fixed and variable arc costs: formulation and dual-based solution heuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 80-89, January.
    11. Sancho, N. G. F., 1997. "The hierarchical network design problem with multiple primary paths," European Journal of Operational Research, Elsevier, vol. 96(2), pages 323-328, January.
    12. J. Beasley & E. Nascimento, 1996. "The Vehicle Routing-Allocation Problem: A unifying framework," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(1), pages 65-86, June.
    13. Duin, C. W. & Volgenant, A., 1996. "An addendum to the hierarchical network design problem," European Journal of Operational Research, Elsevier, vol. 92(1), pages 214-216, July.
    14. Eusebio Angulo & Ricardo García-Ródenas & José Luis Espinosa-Aranda, 2016. "A Lagrangian relaxation approach for expansion of a highway network," Annals of Operations Research, Springer, vol. 246(1), pages 101-126, November.
    15. Flippo, Olaf E. & Kolen, Antoon W. J. & Koster, Arie M. C. A. & van de Leensel, Robert L. M. J., 2000. "A dynamic programming algorithm for the local access telecommunication network expansion problem," European Journal of Operational Research, Elsevier, vol. 127(1), pages 189-202, November.
    16. Chardy, M. & Costa, M.-C. & Faye, A. & Trampont, M., 2012. "Optimizing splitter and fiber location in a multilevel optical FTTH network," European Journal of Operational Research, Elsevier, vol. 222(3), pages 430-440.
    17. Lin, Cheng-Chang, 2010. "The integrated secondary route network design model in the hierarchical hub-and-spoke network for dual express services," International Journal of Production Economics, Elsevier, vol. 123(1), pages 20-30, January.
    18. Anantaram Balakrishnan & Thomas L. Magnanti & Prakash Mirchandani, 1998. "Designing Hierarchical Survivable Networks," Operations Research, INFORMS, vol. 46(1), pages 116-136, February.
    19. Cocking, Cara & Flessa, Steffen & Reinelt, Gerhard, 2012. "Improving access to health facilities in Nouna district, Burkina Faso," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 164-172.
    20. Balakrishnan, Anantaram. & Magnanti, Thomas L. & Mirchandani, Prakash., 1991. "A dual-based algorithm for multi-level network design," Working papers 3365-91., Massachusetts Institute of Technology (MIT), Sloan School of Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:200:y:2010:i:1:p:28-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.