IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v199y2009i3p936-943.html
   My bibliography  Save this article

Risk management in power markets: The Hedging value of production flexibility

Author

Listed:
  • Doege, Jörg
  • Fehr, Max
  • Hinz, Juri
  • Lüthi, Hans-Jakob
  • Wilhelm, Martina

Abstract

Since the 1990s power markets are being restructured worldwide and nowadays electrical power is traded as a commodity. The liberalization and with it the uncertainty in gas, fuel and electrical power prices requires an effective management of production facilities and financial contracts. Thereby derivatives build essential instruments to exchange volume as well as price risks. The challenge for participants in the newly competitive market environment is how to design, price and hedge derivative contracts in particular combination with the flexibility embedded in dispatch strategies of production assets. Accordingly, an adequate basis for management and investment decisions is needed which responds to the highly complex market situation.

Suggested Citation

  • Doege, Jörg & Fehr, Max & Hinz, Juri & Lüthi, Hans-Jakob & Wilhelm, Martina, 2009. "Risk management in power markets: The Hedging value of production flexibility," European Journal of Operational Research, Elsevier, vol. 199(3), pages 936-943, December.
  • Handle: RePEc:eee:ejores:v:199:y:2009:i:3:p:936-943
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00212-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Burger & Bernhard Klar & Alfred Muller & Gero Schindlmayr, 2004. "A spot market model for pricing derivatives in electricity markets," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 109-122.
    2. Juri Hinz, 2006. "Valuing virtual production capacities on flow commodities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 187-209, October.
    3. René Carmona & Nizar Touzi, 2008. "Optimal Multiple Stopping And Valuation Of Swing Options," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 239-268, April.
    4. Juri Hinz & Martina Wilhelm, 2006. "Pricing Flow Commodity Derivatives Using Fixed Income Market Techniques," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(08), pages 1299-1321.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bocklet, Johanna & Hintermayer, Martin, 2020. "How does the EU ETS reform impact allowance prices? The role of myopia, hedging requirements and the Hotelling rule," EWI Working Papers 2020-1, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    2. Richstein, Jörn C. & Chappin, Émile J.L. & de Vries, Laurens J., 2015. "The market (in-)stability reserve for EU carbon emission trading: Why it might fail and how to improve it," Utilities Policy, Elsevier, vol. 35(C), pages 1-18.
    3. Johanna Bocklet & Martin Hintermayer, 2020. "How Does the EU ETS Reform Impact Allowance Prices? The Role of Myopia, Hedging Requirements and the Hotelling Rule," CESifo Working Paper Series 8579, CESifo.
    4. Bhattacharya, Saptarshi & Gupta, Aparna & Kar, Koushik & Owusu, Abena, 2020. "Risk management of renewable power producers from co-dependencies in cash flows," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1081-1093.
    5. Vlad-Cosmin Bulai & Alexandra Horobet & Oana Cristina Popovici & Lucian Belascu & Sofia Adriana Dumitrescu, 2021. "A VaR-Based Methodology for Assessing Carbon Price Risk across European Union Economic Sectors," Energies, MDPI, vol. 14(24), pages 1-21, December.
    6. Hinz, Juri & Yee, Jeremy, 2018. "Optimal forward trading and battery control under renewable electricity generation," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 244-254.
    7. Moret, Fabio & Pinson, Pierre & Papakonstantinou, Athanasios, 2020. "Heterogeneous risk preferences in community-based electricity markets," European Journal of Operational Research, Elsevier, vol. 287(1), pages 36-48.
    8. Nadarajah, Selvaprabu & Secomandi, Nicola, 2023. "A review of the operations literature on real options in energy," European Journal of Operational Research, Elsevier, vol. 309(2), pages 469-487.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fanelli, Viviana & Maddalena, Lucia & Musti, Silvana, 2016. "Modelling electricity futures prices using seasonal path-dependent volatility," Applied Energy, Elsevier, vol. 173(C), pages 92-102.
    2. Kanamura, Takashi & Bunn, Derek W., 2022. "Market making and electricity price formation in Japan," Energy Economics, Elsevier, vol. 107(C).
    3. Soren Christensen & Albrecht Irle & Stephan Jurgens, 2012. "Optimal multiple stopping with random waiting times," Papers 1205.1966, arXiv.org.
    4. repec:dui:wpaper:1504 is not listed on IDEAS
    5. Liangchen Li & Michael Ludkovski, 2018. "Stochastic Switching Games," Papers 1807.03893, arXiv.org.
    6. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    7. A. Stan Hurn & Annastiina Silvennoinen & Timo Teräsvirta, 2016. "A Smooth Transition Logit Model of The Effects of Deregulation in the Electricity Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(4), pages 707-733, June.
    8. Raimund M. Kovacevic, 2019. "Valuation and pricing of electricity delivery contracts: the producer’s view," Annals of Operations Research, Springer, vol. 275(2), pages 421-460, April.
    9. Paul Twomey & Karsten Neuhoff, 2005. "Market Power and Technological Bias: The Case of Electricity Generation," Working Papers EPRG 0501, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Kosater, Peter & Mosler, Karl, 2006. "Can Markov regime-switching models improve power-price forecasts? Evidence from German daily power prices," Applied Energy, Elsevier, vol. 83(9), pages 943-958, September.
    11. Guthrie, Graeme & Videbeck, Steen, 2007. "Electricity spot price dynamics: Beyond financial models," Energy Policy, Elsevier, vol. 35(11), pages 5614-5621, November.
    12. Nadarajah, Selvaprabu & Secomandi, Nicola, 2023. "A review of the operations literature on real options in energy," European Journal of Operational Research, Elsevier, vol. 309(2), pages 469-487.
    13. Pavel V. Gapeev & Peter M. Kort & Maria N. Lavrutich & Jacco J. J. Thijssen, 2022. "Optimal Double Stopping Problems for Maxima and Minima of Geometric Brownian Motions," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 789-813, June.
    14. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    15. Katia Colaneri & Tiziano De Angelis, 2019. "A class of recursive optimal stopping problems with applications to stock trading," Papers 1905.02650, arXiv.org, revised Jun 2021.
    16. George Daskalakis, Lazaros Symeonidis, Raphael N. Markellos, 2015. "Electricity futures prices in an emissions constrained economy: Evidence from European power markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    17. Belleh Fontem, 2022. "An optimal stopping policy for car rental businesses with purchasing customers," Annals of Operations Research, Springer, vol. 317(1), pages 47-76, October.
    18. repec:vuw:vuwscr:18961 is not listed on IDEAS
    19. Tim Leung & Ronnie Sircar, 2009. "Accounting For Risk Aversion, Vesting, Job Termination Risk And Multiple Exercises In Valuation Of Employee Stock Options," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 99-128, January.
    20. Andreas Wagner, 2014. "Residual Demand Modeling and Application to Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    21. Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009. "It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-48.
    22. Rene Carmona & Michael Coulon & Daniel Schwarz, 2012. "Electricity price modeling and asset valuation: a multi-fuel structural approach," Papers 1205.2299, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:199:y:2009:i:3:p:936-943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.